ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpipr Unicode version

Theorem recidpipr 8031
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
Assertion
Ref Expression
recidpipr  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
Distinct variable group:    N, l, u

Proof of Theorem recidpipr
StepHypRef Expression
1 nnnq 7597 . . 3  |-  ( N  e.  N.  ->  [ <. N ,  1o >. ]  ~Q  e.  Q. )
2 recclnq 7567 . . . 4  |-  ( [
<. N ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )
31, 2syl 14 . . 3  |-  ( N  e.  N.  ->  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )
4 mulnqpr 7752 . . 3  |-  ( ( [ <. N ,  1o >. ]  ~Q  e.  Q.  /\  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. ) )
51, 3, 4syl2anc 411 . 2  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. ) )
6 recidnq 7568 . . . . . . 7  |-  ( [
<. N ,  1o >. ]  ~Q  e.  Q.  ->  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
)  =  1Q )
71, 6syl 14 . . . . . 6  |-  ( N  e.  N.  ->  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
)  =  1Q )
87breq2d 4094 . . . . 5  |-  ( N  e.  N.  ->  (
l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <->  l  <Q  1Q ) )
98abbidv 2347 . . . 4  |-  ( N  e.  N.  ->  { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) }  =  {
l  |  l  <Q  1Q } )
107breq1d 4092 . . . . 5  |-  ( N  e.  N.  ->  (
( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <Q  u  <->  1Q 
<Q  u ) )
1110abbidv 2347 . . . 4  |-  ( N  e.  N.  ->  { u  |  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  |  1Q  <Q  u } )
129, 11opeq12d 3864 . . 3  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >. )
13 df-i1p 7642 . . 3  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
1412, 13eqtr4di 2280 . 2  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  1P )
155, 14eqtr3d 2264 1  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {cab 2215   <.cop 3669   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   1oc1o 6545   [cec 6668   N.cnpi 7447    ~Q ceq 7454   Q.cnq 7455   1Qc1q 7456    .Q cmq 7458   *Qcrq 7459    <Q cltq 7460   1Pc1p 7467    .P. cmp 7469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-2o 6553  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-enq0 7599  df-nq0 7600  df-0nq0 7601  df-plq0 7602  df-mq0 7603  df-inp 7641  df-i1p 7642  df-imp 7644
This theorem is referenced by:  recidpirq  8033
  Copyright terms: Public domain W3C validator