ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpipr Unicode version

Theorem recidpipr 7940
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
Assertion
Ref Expression
recidpipr  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
Distinct variable group:    N, l, u

Proof of Theorem recidpipr
StepHypRef Expression
1 nnnq 7506 . . 3  |-  ( N  e.  N.  ->  [ <. N ,  1o >. ]  ~Q  e.  Q. )
2 recclnq 7476 . . . 4  |-  ( [
<. N ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )
31, 2syl 14 . . 3  |-  ( N  e.  N.  ->  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )
4 mulnqpr 7661 . . 3  |-  ( ( [ <. N ,  1o >. ]  ~Q  e.  Q.  /\  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. ) )
51, 3, 4syl2anc 411 . 2  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. ) )
6 recidnq 7477 . . . . . . 7  |-  ( [
<. N ,  1o >. ]  ~Q  e.  Q.  ->  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
)  =  1Q )
71, 6syl 14 . . . . . 6  |-  ( N  e.  N.  ->  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
)  =  1Q )
87breq2d 4046 . . . . 5  |-  ( N  e.  N.  ->  (
l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <->  l  <Q  1Q ) )
98abbidv 2314 . . . 4  |-  ( N  e.  N.  ->  { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) }  =  {
l  |  l  <Q  1Q } )
107breq1d 4044 . . . . 5  |-  ( N  e.  N.  ->  (
( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <Q  u  <->  1Q 
<Q  u ) )
1110abbidv 2314 . . . 4  |-  ( N  e.  N.  ->  { u  |  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  |  1Q  <Q  u } )
129, 11opeq12d 3817 . . 3  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >. )
13 df-i1p 7551 . . 3  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
1412, 13eqtr4di 2247 . 2  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  1P )
155, 14eqtr3d 2231 1  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {cab 2182   <.cop 3626   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   1oc1o 6476   [cec 6599   N.cnpi 7356    ~Q ceq 7363   Q.cnq 7364   1Qc1q 7365    .Q cmq 7367   *Qcrq 7368    <Q cltq 7369   1Pc1p 7376    .P. cmp 7378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-imp 7553
This theorem is referenced by:  recidpirq  7942
  Copyright terms: Public domain W3C validator