ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpipr Unicode version

Theorem recidpipr 7797
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
Assertion
Ref Expression
recidpipr  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
Distinct variable group:    N, l, u

Proof of Theorem recidpipr
StepHypRef Expression
1 nnnq 7363 . . 3  |-  ( N  e.  N.  ->  [ <. N ,  1o >. ]  ~Q  e.  Q. )
2 recclnq 7333 . . . 4  |-  ( [
<. N ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )
31, 2syl 14 . . 3  |-  ( N  e.  N.  ->  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )
4 mulnqpr 7518 . . 3  |-  ( ( [ <. N ,  1o >. ]  ~Q  e.  Q.  /\  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  e.  Q. )  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. ) )
51, 3, 4syl2anc 409 . 2  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. ) )
6 recidnq 7334 . . . . . . 7  |-  ( [
<. N ,  1o >. ]  ~Q  e.  Q.  ->  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
)  =  1Q )
71, 6syl 14 . . . . . 6  |-  ( N  e.  N.  ->  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
)  =  1Q )
87breq2d 3994 . . . . 5  |-  ( N  e.  N.  ->  (
l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <->  l  <Q  1Q ) )
98abbidv 2284 . . . 4  |-  ( N  e.  N.  ->  { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) }  =  {
l  |  l  <Q  1Q } )
107breq1d 3992 . . . . 5  |-  ( N  e.  N.  ->  (
( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <Q  u  <->  1Q 
<Q  u ) )
1110abbidv 2284 . . . 4  |-  ( N  e.  N.  ->  { u  |  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  |  1Q  <Q  u } )
129, 11opeq12d 3766 . . 3  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >. )
13 df-i1p 7408 . . 3  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
1412, 13eqtr4di 2217 . 2  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  ( [ <. N ,  1o >. ]  ~Q  .Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( [
<. N ,  1o >. ]  ~Q  .Q  ( *Q
`  [ <. N ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  1P )
155, 14eqtr3d 2200 1  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  .P.  <. { l  |  l  <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {cab 2151   <.cop 3579   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   1oc1o 6377   [cec 6499   N.cnpi 7213    ~Q ceq 7220   Q.cnq 7221   1Qc1q 7222    .Q cmq 7224   *Qcrq 7225    <Q cltq 7226   1Pc1p 7233    .P. cmp 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-imp 7410
This theorem is referenced by:  recidpirq  7799
  Copyright terms: Public domain W3C validator