| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsbaslemss | Unicode version | ||
| Description: Lemma for prdsbas 13275 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| prdsbaslemss.p |
|
| prdsbaslemss.s |
|
| prdsbaslemss.r |
|
| prdsbaslem.1 |
|
| prdsbaslem.2 |
|
| prdsbaslemss.e |
|
| prdsbaslem.3 |
|
| prdsbaslemss.ss |
|
| Ref | Expression |
|---|---|
| prdsbaslemss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2210 |
. 2
| |
| 2 | prdsbaslemss.p |
. . . 4
| |
| 3 | eqid 2209 |
. . . 4
| |
| 4 | eqidd 2210 |
. . . 4
| |
| 5 | eqidd 2210 |
. . . 4
| |
| 6 | eqidd 2210 |
. . . 4
| |
| 7 | eqidd 2210 |
. . . 4
| |
| 8 | eqidd 2210 |
. . . 4
| |
| 9 | eqidd 2210 |
. . . 4
| |
| 10 | eqidd 2210 |
. . . 4
| |
| 11 | eqidd 2210 |
. . . 4
| |
| 12 | eqidd 2210 |
. . . 4
| |
| 13 | eqidd 2210 |
. . . 4
| |
| 14 | eqidd 2210 |
. . . 4
| |
| 15 | prdsbaslemss.s |
. . . 4
| |
| 16 | prdsbaslemss.r |
. . . 4
| |
| 17 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | prdsval 13272 |
. . 3
|
| 18 | dmexg 4964 |
. . . . . 6
| |
| 19 | 16, 18 | syl 14 |
. . . . 5
|
| 20 | basfn 13057 |
. . . . . . 7
| |
| 21 | vex 2782 |
. . . . . . . 8
| |
| 22 | fvexg 5622 |
. . . . . . . 8
| |
| 23 | 16, 21, 22 | sylancl 413 |
. . . . . . 7
|
| 24 | funfvex 5620 |
. . . . . . . 8
| |
| 25 | 24 | funfni 5399 |
. . . . . . 7
|
| 26 | 20, 23, 25 | sylancr 414 |
. . . . . 6
|
| 27 | 26 | ralrimivw 2584 |
. . . . 5
|
| 28 | ixpexgg 6839 |
. . . . 5
| |
| 29 | 19, 27, 28 | syl2anc 411 |
. . . 4
|
| 30 | mpoexga 6328 |
. . . . 5
| |
| 31 | 29, 29, 30 | syl2anc 411 |
. . . 4
|
| 32 | mpoexga 6328 |
. . . . 5
| |
| 33 | 29, 29, 32 | syl2anc 411 |
. . . 4
|
| 34 | 15 | elexd 2793 |
. . . . . 6
|
| 35 | funfvex 5620 |
. . . . . . 7
| |
| 36 | 35 | funfni 5399 |
. . . . . 6
|
| 37 | 20, 34, 36 | sylancr 414 |
. . . . 5
|
| 38 | mpoexga 6328 |
. . . . 5
| |
| 39 | 37, 29, 38 | syl2anc 411 |
. . . 4
|
| 40 | mpoexga 6328 |
. . . . 5
| |
| 41 | 29, 29, 40 | syl2anc 411 |
. . . 4
|
| 42 | topnfn 13243 |
. . . . . . 7
| |
| 43 | fnfun 5394 |
. . . . . . 7
| |
| 44 | 42, 43 | ax-mp 5 |
. . . . . 6
|
| 45 | cofunexg 6224 |
. . . . . 6
| |
| 46 | 44, 16, 45 | sylancr 414 |
. . . . 5
|
| 47 | ptex 13263 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | vex 2782 |
. . . . . . . 8
| |
| 50 | vex 2782 |
. . . . . . . 8
| |
| 51 | 49, 50 | prss 3803 |
. . . . . . 7
|
| 52 | 51 | anbi1i 458 |
. . . . . 6
|
| 53 | 52 | opabbii 4130 |
. . . . 5
|
| 54 | xpexg 4810 |
. . . . . . 7
| |
| 55 | 29, 29, 54 | syl2anc 411 |
. . . . . 6
|
| 56 | opabssxp 4770 |
. . . . . . 7
| |
| 57 | 56 | a1i 9 |
. . . . . 6
|
| 58 | 55, 57 | ssexd 4203 |
. . . . 5
|
| 59 | 53, 58 | eqeltrrid 2297 |
. . . 4
|
| 60 | mpoexga 6328 |
. . . . 5
| |
| 61 | 29, 29, 60 | syl2anc 411 |
. . . 4
|
| 62 | mpoexga 6328 |
. . . . 5
| |
| 63 | 29, 29, 62 | syl2anc 411 |
. . . 4
|
| 64 | mpoexga 6328 |
. . . . 5
| |
| 65 | 55, 29, 64 | syl2anc 411 |
. . . 4
|
| 66 | 29, 31, 33, 15, 39, 41, 48, 59, 61, 63, 65 | prdsvalstrd 13270 |
. . 3
|
| 67 | 17, 66 | eqbrtrd 4084 |
. 2
|
| 68 | prdsbaslem.2 |
. . 3
| |
| 69 | prdsbaslemss.e |
. . 3
| |
| 70 | 68, 69 | ndxslid 13023 |
. 2
|
| 71 | prdsbaslemss.ss |
. 2
| |
| 72 | prdsbaslem.3 |
. 2
| |
| 73 | prdsbaslem.1 |
. 2
| |
| 74 | 1, 67, 70, 71, 72, 73 | strslfv3 13044 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-map 6767 df-ixp 6816 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-tset 13095 df-ple 13096 df-ds 13098 df-hom 13100 df-cco 13101 df-rest 13240 df-topn 13241 df-topgen 13259 df-pt 13260 df-prds 13266 |
| This theorem is referenced by: prdssca 13274 prdsbas 13275 prdsplusg 13276 prdsmulr 13277 |
| Copyright terms: Public domain | W3C validator |