| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsbaslemss | Unicode version | ||
| Description: Lemma for prdsbas 13152 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| prdsbaslemss.p |
|
| prdsbaslemss.s |
|
| prdsbaslemss.r |
|
| prdsbaslem.1 |
|
| prdsbaslem.2 |
|
| prdsbaslemss.e |
|
| prdsbaslem.3 |
|
| prdsbaslemss.ss |
|
| Ref | Expression |
|---|---|
| prdsbaslemss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2207 |
. 2
| |
| 2 | prdsbaslemss.p |
. . . 4
| |
| 3 | eqid 2206 |
. . . 4
| |
| 4 | eqidd 2207 |
. . . 4
| |
| 5 | eqidd 2207 |
. . . 4
| |
| 6 | eqidd 2207 |
. . . 4
| |
| 7 | eqidd 2207 |
. . . 4
| |
| 8 | eqidd 2207 |
. . . 4
| |
| 9 | eqidd 2207 |
. . . 4
| |
| 10 | eqidd 2207 |
. . . 4
| |
| 11 | eqidd 2207 |
. . . 4
| |
| 12 | eqidd 2207 |
. . . 4
| |
| 13 | eqidd 2207 |
. . . 4
| |
| 14 | eqidd 2207 |
. . . 4
| |
| 15 | prdsbaslemss.s |
. . . 4
| |
| 16 | prdsbaslemss.r |
. . . 4
| |
| 17 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | prdsval 13149 |
. . 3
|
| 18 | dmexg 4947 |
. . . . . 6
| |
| 19 | 16, 18 | syl 14 |
. . . . 5
|
| 20 | basfn 12934 |
. . . . . . 7
| |
| 21 | vex 2776 |
. . . . . . . 8
| |
| 22 | fvexg 5602 |
. . . . . . . 8
| |
| 23 | 16, 21, 22 | sylancl 413 |
. . . . . . 7
|
| 24 | funfvex 5600 |
. . . . . . . 8
| |
| 25 | 24 | funfni 5381 |
. . . . . . 7
|
| 26 | 20, 23, 25 | sylancr 414 |
. . . . . 6
|
| 27 | 26 | ralrimivw 2581 |
. . . . 5
|
| 28 | ixpexgg 6816 |
. . . . 5
| |
| 29 | 19, 27, 28 | syl2anc 411 |
. . . 4
|
| 30 | mpoexga 6305 |
. . . . 5
| |
| 31 | 29, 29, 30 | syl2anc 411 |
. . . 4
|
| 32 | mpoexga 6305 |
. . . . 5
| |
| 33 | 29, 29, 32 | syl2anc 411 |
. . . 4
|
| 34 | 15 | elexd 2786 |
. . . . . 6
|
| 35 | funfvex 5600 |
. . . . . . 7
| |
| 36 | 35 | funfni 5381 |
. . . . . 6
|
| 37 | 20, 34, 36 | sylancr 414 |
. . . . 5
|
| 38 | mpoexga 6305 |
. . . . 5
| |
| 39 | 37, 29, 38 | syl2anc 411 |
. . . 4
|
| 40 | mpoexga 6305 |
. . . . 5
| |
| 41 | 29, 29, 40 | syl2anc 411 |
. . . 4
|
| 42 | topnfn 13120 |
. . . . . . 7
| |
| 43 | fnfun 5376 |
. . . . . . 7
| |
| 44 | 42, 43 | ax-mp 5 |
. . . . . 6
|
| 45 | cofunexg 6201 |
. . . . . 6
| |
| 46 | 44, 16, 45 | sylancr 414 |
. . . . 5
|
| 47 | ptex 13140 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | vex 2776 |
. . . . . . . 8
| |
| 50 | vex 2776 |
. . . . . . . 8
| |
| 51 | 49, 50 | prss 3791 |
. . . . . . 7
|
| 52 | 51 | anbi1i 458 |
. . . . . 6
|
| 53 | 52 | opabbii 4115 |
. . . . 5
|
| 54 | xpexg 4793 |
. . . . . . 7
| |
| 55 | 29, 29, 54 | syl2anc 411 |
. . . . . 6
|
| 56 | opabssxp 4753 |
. . . . . . 7
| |
| 57 | 56 | a1i 9 |
. . . . . 6
|
| 58 | 55, 57 | ssexd 4188 |
. . . . 5
|
| 59 | 53, 58 | eqeltrrid 2294 |
. . . 4
|
| 60 | mpoexga 6305 |
. . . . 5
| |
| 61 | 29, 29, 60 | syl2anc 411 |
. . . 4
|
| 62 | mpoexga 6305 |
. . . . 5
| |
| 63 | 29, 29, 62 | syl2anc 411 |
. . . 4
|
| 64 | mpoexga 6305 |
. . . . 5
| |
| 65 | 55, 29, 64 | syl2anc 411 |
. . . 4
|
| 66 | 29, 31, 33, 15, 39, 41, 48, 59, 61, 63, 65 | prdsvalstrd 13147 |
. . 3
|
| 67 | 17, 66 | eqbrtrd 4069 |
. 2
|
| 68 | prdsbaslem.2 |
. . 3
| |
| 69 | prdsbaslemss.e |
. . 3
| |
| 70 | 68, 69 | ndxslid 12901 |
. 2
|
| 71 | prdsbaslemss.ss |
. 2
| |
| 72 | prdsbaslem.3 |
. 2
| |
| 73 | prdsbaslem.1 |
. 2
| |
| 74 | 1, 67, 70, 71, 72, 73 | strslfv3 12922 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-map 6744 df-ixp 6793 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-fz 10138 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-tset 12972 df-ple 12973 df-ds 12975 df-hom 12977 df-cco 12978 df-rest 13117 df-topn 13118 df-topgen 13136 df-pt 13137 df-prds 13143 |
| This theorem is referenced by: prdssca 13151 prdsbas 13152 prdsplusg 13153 prdsmulr 13154 |
| Copyright terms: Public domain | W3C validator |