ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsbaslemss Unicode version

Theorem prdsbaslemss 12976
Description: Lemma for prdsbas 12978 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.)
Hypotheses
Ref Expression
prdsbaslemss.p  |-  P  =  ( S X_s R )
prdsbaslemss.s  |-  ( ph  ->  S  e.  V )
prdsbaslemss.r  |-  ( ph  ->  R  e.  W )
prdsbaslem.1  |-  A  =  ( E `  P
)
prdsbaslem.2  |-  E  = Slot  ( E `  ndx )
prdsbaslemss.e  |-  ( E `
 ndx )  e.  NN
prdsbaslem.3  |-  ( ph  ->  T  e.  X )
prdsbaslemss.ss  |-  ( ph  ->  { <. ( E `  ndx ) ,  T >. } 
C_  P )
Assertion
Ref Expression
prdsbaslemss  |-  ( ph  ->  A  =  T )

Proof of Theorem prdsbaslemss
Dummy variables  a  c  d  e  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . 2  |-  ( ph  ->  P  =  P )
2 prdsbaslemss.p . . . 4  |-  P  =  ( S X_s R )
3 eqid 2196 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
4 eqidd 2197 . . . 4  |-  ( ph  ->  dom  R  =  dom  R )
5 eqidd 2197 . . . 4  |-  ( ph  -> 
X_ x  e.  dom  R ( Base `  ( R `  x )
)  =  X_ x  e.  dom  R ( Base `  ( R `  x
) ) )
6 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
7 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
8 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) )
9 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( S  gsumg  ( x  e.  dom  R  |->  ( ( f `  x
) ( .i `  ( R `  x ) ) ( g `  x ) ) ) ) ) )
10 eqidd 2197 . . . 4  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
11 eqidd 2197 . . . 4  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) }  =  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } )
12 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  sup (
( ran  ( x  e.  dom  R  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
13 eqidd 2197 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) )
14 eqidd 2197 . . . 4  |-  ( ph  ->  ( a  e.  (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( X_ x  e. 
dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) ) )
15 prdsbaslemss.s . . . 4  |-  ( ph  ->  S  e.  V )
16 prdsbaslemss.r . . . 4  |-  ( ph  ->  R  e.  W )
172, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16prdsval 12975 . . 3  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
18 dmexg 4931 . . . . . 6  |-  ( R  e.  W  ->  dom  R  e.  _V )
1916, 18syl 14 . . . . 5  |-  ( ph  ->  dom  R  e.  _V )
20 basfn 12761 . . . . . . 7  |-  Base  Fn  _V
21 vex 2766 . . . . . . . 8  |-  x  e. 
_V
22 fvexg 5580 . . . . . . . 8  |-  ( ( R  e.  W  /\  x  e.  _V )  ->  ( R `  x
)  e.  _V )
2316, 21, 22sylancl 413 . . . . . . 7  |-  ( ph  ->  ( R `  x
)  e.  _V )
24 funfvex 5578 . . . . . . . 8  |-  ( ( Fun  Base  /\  ( R `  x )  e.  dom  Base )  ->  ( Base `  ( R `  x ) )  e. 
_V )
2524funfni 5361 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  ( R `  x )  e.  _V )  ->  ( Base `  ( R `  x ) )  e. 
_V )
2620, 23, 25sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  ( R `  x )
)  e.  _V )
2726ralrimivw 2571 . . . . 5  |-  ( ph  ->  A. x  e.  dom  R ( Base `  ( R `  x )
)  e.  _V )
28 ixpexgg 6790 . . . . 5  |-  ( ( dom  R  e.  _V  /\ 
A. x  e.  dom  R ( Base `  ( R `  x )
)  e.  _V )  -> 
X_ x  e.  dom  R ( Base `  ( R `  x )
)  e.  _V )
2919, 27, 28syl2anc 411 . . . 4  |-  ( ph  -> 
X_ x  e.  dom  R ( Base `  ( R `  x )
)  e.  _V )
30 mpoexga 6279 . . . . 5  |-  ( (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  e.  _V  /\  X_ x  e.  dom  R
( Base `  ( R `  x ) )  e. 
_V )  ->  (
f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  e.  _V )
3129, 29, 30syl2anc 411 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  e.  _V )
32 mpoexga 6279 . . . . 5  |-  ( (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  e.  _V  /\  X_ x  e.  dom  R
( Base `  ( R `  x ) )  e. 
_V )  ->  (
f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) )  e.  _V )
3329, 29, 32syl2anc 411 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) )  e.  _V )
3415elexd 2776 . . . . . 6  |-  ( ph  ->  S  e.  _V )
35 funfvex 5578 . . . . . . 7  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
3635funfni 5361 . . . . . 6  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
3720, 34, 36sylancr 414 . . . . 5  |-  ( ph  ->  ( Base `  S
)  e.  _V )
38 mpoexga 6279 . . . . 5  |-  ( ( ( Base `  S
)  e.  _V  /\  X_ x  e.  dom  R
( Base `  ( R `  x ) )  e. 
_V )  ->  (
f  e.  ( Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) )  e.  _V )
3937, 29, 38syl2anc 411 . . . 4  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) )  e.  _V )
40 mpoexga 6279 . . . . 5  |-  ( (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  e.  _V  /\  X_ x  e.  dom  R
( Base `  ( R `  x ) )  e. 
_V )  ->  (
f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( S  gsumg  ( x  e.  dom  R  |->  ( ( f `  x
) ( .i `  ( R `  x ) ) ( g `  x ) ) ) ) )  e.  _V )
4129, 29, 40syl2anc 411 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  e.  _V )
42 topnfn 12946 . . . . . . 7  |-  TopOpen  Fn  _V
43 fnfun 5356 . . . . . . 7  |-  ( TopOpen  Fn 
_V  ->  Fun  TopOpen )
4442, 43ax-mp 5 . . . . . 6  |-  Fun  TopOpen
45 cofunexg 6175 . . . . . 6  |-  ( ( Fun  TopOpen  /\  R  e.  W )  ->  ( TopOpen  o.  R )  e. 
_V )
4644, 16, 45sylancr 414 . . . . 5  |-  ( ph  ->  ( TopOpen  o.  R )  e.  _V )
47 ptex 12966 . . . . 5  |-  ( (
TopOpen  o.  R )  e. 
_V  ->  ( Xt_ `  ( TopOpen  o.  R ) )  e.  _V )
4846, 47syl 14 . . . 4  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  e.  _V )
49 vex 2766 . . . . . . . 8  |-  f  e. 
_V
50 vex 2766 . . . . . . . 8  |-  g  e. 
_V
5149, 50prss 3779 . . . . . . 7  |-  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  /\  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) )  <->  { f ,  g }  C_  X_ x  e.  dom  R
( Base `  ( R `  x ) ) )
5251anbi1i 458 . . . . . 6  |-  ( ( ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) )  /\  g  e.  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) )  /\  A. x  e.  dom  R
( f `  x
) ( le `  ( R `  x ) ) ( g `  x ) )  <->  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) )
5352opabbii 4101 . . . . 5  |-  { <. f ,  g >.  |  ( ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) )  /\  g  e.  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) )  /\  A. x  e.  dom  R
( f `  x
) ( le `  ( R `  x ) ) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  X_ x  e. 
dom  R ( Base `  ( R `  x
) )  /\  A. x  e.  dom  R ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) }
54 xpexg 4778 . . . . . . 7  |-  ( (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  e.  _V  /\  X_ x  e.  dom  R
( Base `  ( R `  x ) )  e. 
_V )  ->  ( X_ x  e.  dom  R
( Base `  ( R `  x ) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x )
) )  e.  _V )
5529, 29, 54syl2anc 411 . . . . . 6  |-  ( ph  ->  ( X_ x  e. 
dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) )  e. 
_V )
56 opabssxp 4738 . . . . . . 7  |-  { <. f ,  g >.  |  ( ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) )  /\  g  e.  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) )  /\  A. x  e.  dom  R
( f `  x
) ( le `  ( R `  x ) ) ( g `  x ) ) } 
C_  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) )
5756a1i 9 . . . . . 6  |-  ( ph  ->  { <. f ,  g
>.  |  ( (
f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  /\  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) )  /\  A. x  e.  dom  R ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } 
C_  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) )
5855, 57ssexd 4174 . . . . 5  |-  ( ph  ->  { <. f ,  g
>.  |  ( (
f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  /\  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) )  /\  A. x  e.  dom  R ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) }  e.  _V )
5953, 58eqeltrrid 2284 . . . 4  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) }  e.  _V )
60 mpoexga 6279 . . . . 5  |-  ( (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  e.  _V  /\  X_ x  e.  dom  R
( Base `  ( R `  x ) )  e. 
_V )  ->  (
f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  e. 
_V )
6129, 29, 60syl2anc 411 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  sup (
( ran  ( x  e.  dom  R  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  e.  _V )
62 mpoexga 6279 . . . . 5  |-  ( (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  e.  _V  /\  X_ x  e.  dom  R
( Base `  ( R `  x ) )  e. 
_V )  ->  (
f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  e.  _V )
6329, 29, 62syl2anc 411 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )  e.  _V )
64 mpoexga 6279 . . . . 5  |-  ( ( ( X_ x  e. 
dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) )  e. 
_V  /\  X_ x  e. 
dom  R ( Base `  ( R `  x
) )  e.  _V )  ->  ( a  e.  ( X_ x  e. 
dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  e.  _V )
6555, 29, 64syl2anc 411 . . . 4  |-  ( ph  ->  ( a  e.  (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  e.  _V )
6629, 31, 33, 15, 39, 41, 48, 59, 61, 63, 65prdsvalstrd 12973 . . 3  |-  ( ph  ->  ( ( { <. (
Base `  ndx ) , 
X_ x  e.  dom  R ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) Struct  <. 1 , ; 1 5 >. )
6717, 66eqbrtrd 4056 . 2  |-  ( ph  ->  P Struct  <. 1 , ; 1 5 >. )
68 prdsbaslem.2 . . 3  |-  E  = Slot  ( E `  ndx )
69 prdsbaslemss.e . . 3  |-  ( E `
 ndx )  e.  NN
7068, 69ndxslid 12728 . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
71 prdsbaslemss.ss . 2  |-  ( ph  ->  { <. ( E `  ndx ) ,  T >. } 
C_  P )
72 prdsbaslem.3 . 2  |-  ( ph  ->  T  e.  X )
73 prdsbaslem.1 . 2  |-  A  =  ( E `  P
)
741, 67, 70, 71, 72, 73strslfv3 12749 1  |-  ( ph  ->  A  =  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    u. cun 3155    C_ wss 3157   {csn 3623   {cpr 3624   {ctp 3625   <.cop 3626   class class class wbr 4034   {copab 4094    |-> cmpt 4095    X. cxp 4662   dom cdm 4664   ran crn 4665    o. ccom 4668   Fun wfun 5253    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205   2ndc2nd 6206   X_cixp 6766   supcsup 7057   0cc0 7896   1c1 7897   RR*cxr 8077    < clt 8078   NNcn 9007   5c5 9061  ;cdc 9474   Struct cstr 12699   ndxcnx 12700  Slot cslot 12702   Basecbs 12703   +g cplusg 12780   .rcmulr 12781  Scalarcsca 12783   .scvsca 12784   .icip 12785  TopSetcts 12786   lecple 12787   distcds 12789   Hom chom 12791  compcco 12792   TopOpenctopn 12942   Xt_cpt 12957    gsumg cgsu 12959   X_scprds 12967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-fz 10101  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799  df-ple 12800  df-ds 12802  df-hom 12804  df-cco 12805  df-rest 12943  df-topn 12944  df-topgen 12962  df-pt 12963  df-prds 12969
This theorem is referenced by:  prdssca  12977  prdsbas  12978  prdsplusg  12979  prdsmulr  12980
  Copyright terms: Public domain W3C validator