| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2rem | Unicode version | ||
| Description: "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| peano2rem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8145 |
. 2
| |
| 2 | resubcl 8410 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 |
| This theorem is referenced by: lem1 8994 addltmul 9348 div4p1lem1div2 9365 suprzclex 9545 qbtwnxr 10477 fldiv4p1lem1div2 10525 fldiv4lem1div2uz2 10526 ceiqle 10535 intfracq 10542 flqdiv 10543 iseqf1olemab 10724 seq3f1olemqsum 10735 expubnd 10818 bernneq2 10883 zfz1isolemiso 11061 tgioo 15228 hovercncf 15320 hovera 15321 hoverb 15322 hoverlt1 15323 hovergt0 15324 ivthdichlem 15325 perfectlem2 15674 lgsval2lem 15689 gausslemma2dlem0c 15730 gausslemma2dlem1a 15737 lgseisenlem2 15750 lgseisen 15753 lgsquadlem1 15756 lgsquadlem2 15757 2lgslem1c 15769 2lgsoddprmlem2 15785 |
| Copyright terms: Public domain | W3C validator |