ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2rem Unicode version

Theorem peano2rem 8243
Description: "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
peano2rem  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )

Proof of Theorem peano2rem
StepHypRef Expression
1 1re 7975 . 2  |-  1  e.  RR
2 resubcl 8240 . 2  |-  ( ( N  e.  RR  /\  1  e.  RR )  ->  ( N  -  1 )  e.  RR )
31, 2mpan2 425 1  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160  (class class class)co 5891   RRcr 7829   1c1 7831    - cmin 8147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-setind 4551  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-addcom 7930  ax-addass 7932  ax-distr 7934  ax-i2m1 7935  ax-0id 7938  ax-rnegex 7939  ax-cnre 7941
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-sub 8149  df-neg 8150
This theorem is referenced by:  lem1  8823  addltmul  9174  div4p1lem1div2  9191  suprzclex  9370  qbtwnxr  10277  fldiv4p1lem1div2  10324  ceiqle  10332  intfracq  10339  flqdiv  10340  iseqf1olemab  10508  seq3f1olemqsum  10519  expubnd  10596  bernneq2  10661  zfz1isolemiso  10838  tgioo  14449  lgsval2lem  14814  lgseisenlem2  14854  2lgsoddprmlem2  14857
  Copyright terms: Public domain W3C validator