ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intfracq Unicode version

Theorem intfracq 10322
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intqfrac2 10321. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1  |-  Z  =  ( |_ `  ( M  /  N ) )
intfracq.2  |-  F  =  ( ( M  /  N )  -  Z
)
Assertion
Ref Expression
intfracq  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M  /  N
)  =  ( Z  +  F ) ) )

Proof of Theorem intfracq
StepHypRef Expression
1 znq 9626 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  QQ )
2 intfracq.1 . . . . 5  |-  Z  =  ( |_ `  ( M  /  N ) )
3 intfracq.2 . . . . 5  |-  F  =  ( ( M  /  N )  -  Z
)
42, 3intqfrac2 10321 . . . 4  |-  ( ( M  /  N )  e.  QQ  ->  (
0  <_  F  /\  F  <  1  /\  ( M  /  N )  =  ( Z  +  F
) ) )
51, 4syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <  1  /\  ( M  /  N
)  =  ( Z  +  F ) ) )
65simp1d 1009 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <_  F )
7 qfraclt1 10282 . . . . . . 7  |-  ( ( M  /  N )  e.  QQ  ->  (
( M  /  N
)  -  ( |_
`  ( M  /  N ) ) )  <  1 )
81, 7syl 14 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )  <  1 )
92oveq2i 5888 . . . . . . . 8  |-  ( ( M  /  N )  -  Z )  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )
103, 9eqtri 2198 . . . . . . 7  |-  F  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )
1110a1i 9 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N
) ) ) )
12 simpr 110 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN )
1312nncnd 8935 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
1412nnap0d 8967 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N #  0 )
1513, 14dividapd 8745 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  /  N
)  =  1 )
168, 11, 153brtr4d 4037 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  <  ( N  /  N ) )
17 qre 9627 . . . . . . . . 9  |-  ( ( M  /  N )  e.  QQ  ->  ( M  /  N )  e.  RR )
181, 17syl 14 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  RR )
191flqcld 10279 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  ZZ )
202, 19eqeltrid 2264 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  ZZ )
2120zred 9377 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  RR )
2218, 21resubcld 8340 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  Z
)  e.  RR )
233, 22eqeltrid 2264 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  e.  RR )
24 nnre 8928 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR )
2524adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  RR )
26 nngt0 8946 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  N )
2724, 26jca 306 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
2827adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  e.  RR  /\  0  <  N ) )
29 ltmuldiv2 8834 . . . . . 6  |-  ( ( F  e.  RR  /\  N  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( N  x.  F )  <  N  <->  F  <  ( N  /  N ) ) )
3023, 25, 28, 29syl3anc 1238 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <  N  <->  F  <  ( N  /  N ) ) )
3116, 30mpbird 167 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  <  N )
323oveq2i 5888 . . . . . . 7  |-  ( N  x.  F )  =  ( N  x.  (
( M  /  N
)  -  Z ) )
3318recnd 7988 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
3420zcnd 9378 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  CC )
3513, 33, 34subdid 8373 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  (
( M  /  N
)  -  Z ) )  =  ( ( N  x.  ( M  /  N ) )  -  ( N  x.  Z ) ) )
3632, 35eqtrid 2222 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  =  ( ( N  x.  ( M  /  N ) )  -  ( N  x.  Z ) ) )
37 zcn 9260 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
3837adantr 276 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
3938, 13, 14divcanap2d 8751 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
40 simpl 109 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  ZZ )
4139, 40eqeltrd 2254 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  e.  ZZ )
42 nnz 9274 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
4342adantl 277 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
4443, 20zmulcld 9383 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  Z
)  e.  ZZ )
4541, 44zsubcld 9382 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  ( M  /  N
) )  -  ( N  x.  Z )
)  e.  ZZ )
4636, 45eqeltrd 2254 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  e.  ZZ )
47 zltlem1 9312 . . . . 5  |-  ( ( ( N  x.  F
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  F )  <  N  <->  ( N  x.  F )  <_  ( N  - 
1 ) ) )
4846, 43, 47syl2anc 411 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <  N  <->  ( N  x.  F )  <_  ( N  - 
1 ) ) )
4931, 48mpbid 147 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  <_  ( N  -  1 ) )
50 peano2rem 8226 . . . . . 6  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
5124, 50syl 14 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
5251adantl 277 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  -  1 )  e.  RR )
53 lemuldiv2 8841 . . . 4  |-  ( ( F  e.  RR  /\  ( N  -  1
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( ( N  x.  F )  <_  ( N  -  1 )  <->  F  <_  ( ( N  -  1 )  /  N ) ) )
5423, 52, 28, 53syl3anc 1238 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <_  ( N  -  1 )  <-> 
F  <_  ( ( N  -  1 )  /  N ) ) )
5549, 54mpbid 147 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  <_  ( ( N  -  1 )  /  N ) )
565simp3d 1011 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  =  ( Z  +  F ) )
576, 55, 563jca 1177 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M  /  N
)  =  ( Z  +  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    < clt 7994    <_ cle 7995    - cmin 8130    / cdiv 8631   NNcn 8921   ZZcz 9255   QQcq 9621   |_cfl 10270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-q 9622  df-rp 9656  df-fl 10272
This theorem is referenced by:  flqdiv  10323
  Copyright terms: Public domain W3C validator