ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2rem GIF version

Theorem peano2rem 8354
Description: "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
peano2rem (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)

Proof of Theorem peano2rem
StepHypRef Expression
1 1re 8086 . 2 1 ∈ ℝ
2 resubcl 8351 . 2 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ)
31, 2mpan2 425 1 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  (class class class)co 5956  cr 7939  1c1 7941  cmin 8258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-setind 4592  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-iota 5240  df-fun 5281  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-sub 8260  df-neg 8261
This theorem is referenced by:  lem1  8935  addltmul  9289  div4p1lem1div2  9306  suprzclex  9486  qbtwnxr  10417  fldiv4p1lem1div2  10465  fldiv4lem1div2uz2  10466  ceiqle  10475  intfracq  10482  flqdiv  10483  iseqf1olemab  10664  seq3f1olemqsum  10675  expubnd  10758  bernneq2  10823  zfz1isolemiso  11001  tgioo  15096  hovercncf  15188  hovera  15189  hoverb  15190  hoverlt1  15191  hovergt0  15192  ivthdichlem  15193  perfectlem2  15542  lgsval2lem  15557  gausslemma2dlem0c  15598  gausslemma2dlem1a  15605  lgseisenlem2  15618  lgseisen  15621  lgsquadlem1  15624  lgsquadlem2  15625  2lgslem1c  15637  2lgsoddprmlem2  15653
  Copyright terms: Public domain W3C validator