![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2rem | GIF version |
Description: "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
peano2rem | ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7991 | . 2 ⊢ 1 ∈ ℝ | |
2 | resubcl 8256 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ) | |
3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 (class class class)co 5900 ℝcr 7845 1c1 7847 − cmin 8163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-setind 4557 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-distr 7950 ax-i2m1 7951 ax-0id 7954 ax-rnegex 7955 ax-cnre 7957 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-br 4022 df-opab 4083 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-iota 5199 df-fun 5240 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-sub 8165 df-neg 8166 |
This theorem is referenced by: lem1 8839 addltmul 9190 div4p1lem1div2 9207 suprzclex 9386 qbtwnxr 10294 fldiv4p1lem1div2 10342 ceiqle 10350 intfracq 10357 flqdiv 10358 iseqf1olemab 10528 seq3f1olemqsum 10539 expubnd 10617 bernneq2 10682 zfz1isolemiso 10860 tgioo 14531 lgsval2lem 14897 lgseisenlem2 14937 2lgsoddprmlem2 14940 |
Copyright terms: Public domain | W3C validator |