![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2rem | GIF version |
Description: "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
peano2rem | ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 8020 | . 2 ⊢ 1 ∈ ℝ | |
2 | resubcl 8285 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ) | |
3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 (class class class)co 5919 ℝcr 7873 1c1 7875 − cmin 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-neg 8195 |
This theorem is referenced by: lem1 8868 addltmul 9222 div4p1lem1div2 9239 suprzclex 9418 qbtwnxr 10329 fldiv4p1lem1div2 10377 fldiv4lem1div2uz2 10378 ceiqle 10387 intfracq 10394 flqdiv 10395 iseqf1olemab 10576 seq3f1olemqsum 10587 expubnd 10670 bernneq2 10735 zfz1isolemiso 10913 tgioo 14733 hovercncf 14825 hovera 14826 hoverb 14827 hoverlt1 14828 hovergt0 14829 ivthdichlem 14830 lgsval2lem 15167 gausslemma2dlem0c 15208 gausslemma2dlem1a 15215 lgseisenlem2 15228 lgseisen 15231 lgsquadlem1 15234 lgsquadlem2 15235 2lgslem1c 15247 2lgsoddprmlem2 15263 |
Copyright terms: Public domain | W3C validator |