| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2rem | GIF version | ||
| Description: "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| peano2rem | ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8141 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | resubcl 8406 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 (class class class)co 6000 ℝcr 7994 1c1 7996 − cmin 8313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-neg 8316 |
| This theorem is referenced by: lem1 8990 addltmul 9344 div4p1lem1div2 9361 suprzclex 9541 qbtwnxr 10472 fldiv4p1lem1div2 10520 fldiv4lem1div2uz2 10521 ceiqle 10530 intfracq 10537 flqdiv 10538 iseqf1olemab 10719 seq3f1olemqsum 10730 expubnd 10813 bernneq2 10878 zfz1isolemiso 11056 tgioo 15222 hovercncf 15314 hovera 15315 hoverb 15316 hoverlt1 15317 hovergt0 15318 ivthdichlem 15319 perfectlem2 15668 lgsval2lem 15683 gausslemma2dlem0c 15724 gausslemma2dlem1a 15731 lgseisenlem2 15744 lgseisen 15747 lgsquadlem1 15750 lgsquadlem2 15751 2lgslem1c 15763 2lgsoddprmlem2 15779 |
| Copyright terms: Public domain | W3C validator |