ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2rem GIF version

Theorem peano2rem 8259
Description: "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
peano2rem (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)

Proof of Theorem peano2rem
StepHypRef Expression
1 1re 7991 . 2 1 ∈ ℝ
2 resubcl 8256 . 2 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ)
31, 2mpan2 425 1 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160  (class class class)co 5900  cr 7845  1c1 7847  cmin 8163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-setind 4557  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-distr 7950  ax-i2m1 7951  ax-0id 7954  ax-rnegex 7955  ax-cnre 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-iota 5199  df-fun 5240  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-sub 8165  df-neg 8166
This theorem is referenced by:  lem1  8839  addltmul  9190  div4p1lem1div2  9207  suprzclex  9386  qbtwnxr  10294  fldiv4p1lem1div2  10342  ceiqle  10350  intfracq  10357  flqdiv  10358  iseqf1olemab  10528  seq3f1olemqsum  10539  expubnd  10617  bernneq2  10682  zfz1isolemiso  10860  tgioo  14531  lgsval2lem  14897  lgseisenlem2  14937  2lgsoddprmlem2  14940
  Copyright terms: Public domain W3C validator