| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pfxccatin12lem1 | Unicode version | ||
| Description: Lemma 1 for pfxccatin12 11224. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.) |
| Ref | Expression |
|---|---|
| pfxccatin12lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2 10172 |
. . . . 5
| |
| 2 | zsubcl 9448 |
. . . . . . 7
| |
| 3 | 2 | 3adant1 1018 |
. . . . . 6
|
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | 1, 4 | sylbi 121 |
. . . 4
|
| 6 | 5 | adantr 276 |
. . 3
|
| 7 | elfzonelfzo 10396 |
. . 3
| |
| 8 | 6, 7 | syl 14 |
. 2
|
| 9 | elfz2nn0 10269 |
. . . . . . . 8
| |
| 10 | nn0cn 9340 |
. . . . . . . . . 10
| |
| 11 | nn0cn 9340 |
. . . . . . . . . 10
| |
| 12 | elfzelz 10182 |
. . . . . . . . . . . 12
| |
| 13 | zcn 9412 |
. . . . . . . . . . . 12
| |
| 14 | subcl 8306 |
. . . . . . . . . . . . . . . . . 18
| |
| 15 | 14 | ancoms 268 |
. . . . . . . . . . . . . . . . 17
|
| 16 | 15 | addridd 8256 |
. . . . . . . . . . . . . . . 16
|
| 17 | 16 | eqcomd 2213 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | adantl 277 |
. . . . . . . . . . . . . 14
|
| 19 | simprr 531 |
. . . . . . . . . . . . . . . 16
| |
| 20 | simpl 109 |
. . . . . . . . . . . . . . . . 17
| |
| 21 | 20 | adantl 277 |
. . . . . . . . . . . . . . . 16
|
| 22 | simpl 109 |
. . . . . . . . . . . . . . . 16
| |
| 23 | 19, 21, 22 | npncan3d 8454 |
. . . . . . . . . . . . . . 15
|
| 24 | 23 | eqcomd 2213 |
. . . . . . . . . . . . . 14
|
| 25 | 18, 24 | oveq12d 5985 |
. . . . . . . . . . . . 13
|
| 26 | 25 | ex 115 |
. . . . . . . . . . . 12
|
| 27 | 12, 13, 26 | 3syl 17 |
. . . . . . . . . . 11
|
| 28 | 27 | com12 30 |
. . . . . . . . . 10
|
| 29 | 10, 11, 28 | syl2an 289 |
. . . . . . . . 9
|
| 30 | 29 | 3adant3 1020 |
. . . . . . . 8
|
| 31 | 9, 30 | sylbi 121 |
. . . . . . 7
|
| 32 | 31 | imp 124 |
. . . . . 6
|
| 33 | 32 | eleq2d 2277 |
. . . . 5
|
| 34 | 33 | biimpa 296 |
. . . 4
|
| 35 | 0zd 9419 |
. . . . . 6
| |
| 36 | elfz2 10172 |
. . . . . . . 8
| |
| 37 | zsubcl 9448 |
. . . . . . . . . . 11
| |
| 38 | 37 | ancoms 268 |
. . . . . . . . . 10
|
| 39 | 38 | 3adant2 1019 |
. . . . . . . . 9
|
| 40 | 39 | adantr 276 |
. . . . . . . 8
|
| 41 | 36, 40 | sylbi 121 |
. . . . . . 7
|
| 42 | 41 | adantl 277 |
. . . . . 6
|
| 43 | 6, 35, 42 | 3jca 1180 |
. . . . 5
|
| 44 | 43 | adantr 276 |
. . . 4
|
| 45 | fzosubel2 10361 |
. . . 4
| |
| 46 | 34, 44, 45 | syl2anc 411 |
. . 3
|
| 47 | 46 | ex 115 |
. 2
|
| 48 | 8, 47 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 |
| This theorem is referenced by: pfxccatin12lem2 11222 |
| Copyright terms: Public domain | W3C validator |