| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pfxccatin12lem1 | Unicode version | ||
| Description: Lemma 1 for pfxccatin12 11260. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.) |
| Ref | Expression |
|---|---|
| pfxccatin12lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2 10207 |
. . . . 5
| |
| 2 | zsubcl 9483 |
. . . . . . 7
| |
| 3 | 2 | 3adant1 1039 |
. . . . . 6
|
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | 1, 4 | sylbi 121 |
. . . 4
|
| 6 | 5 | adantr 276 |
. . 3
|
| 7 | elfzonelfzo 10431 |
. . 3
| |
| 8 | 6, 7 | syl 14 |
. 2
|
| 9 | elfz2nn0 10304 |
. . . . . . . 8
| |
| 10 | nn0cn 9375 |
. . . . . . . . . 10
| |
| 11 | nn0cn 9375 |
. . . . . . . . . 10
| |
| 12 | elfzelz 10217 |
. . . . . . . . . . . 12
| |
| 13 | zcn 9447 |
. . . . . . . . . . . 12
| |
| 14 | subcl 8341 |
. . . . . . . . . . . . . . . . . 18
| |
| 15 | 14 | ancoms 268 |
. . . . . . . . . . . . . . . . 17
|
| 16 | 15 | addridd 8291 |
. . . . . . . . . . . . . . . 16
|
| 17 | 16 | eqcomd 2235 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | adantl 277 |
. . . . . . . . . . . . . 14
|
| 19 | simprr 531 |
. . . . . . . . . . . . . . . 16
| |
| 20 | simpl 109 |
. . . . . . . . . . . . . . . . 17
| |
| 21 | 20 | adantl 277 |
. . . . . . . . . . . . . . . 16
|
| 22 | simpl 109 |
. . . . . . . . . . . . . . . 16
| |
| 23 | 19, 21, 22 | npncan3d 8489 |
. . . . . . . . . . . . . . 15
|
| 24 | 23 | eqcomd 2235 |
. . . . . . . . . . . . . 14
|
| 25 | 18, 24 | oveq12d 6018 |
. . . . . . . . . . . . 13
|
| 26 | 25 | ex 115 |
. . . . . . . . . . . 12
|
| 27 | 12, 13, 26 | 3syl 17 |
. . . . . . . . . . 11
|
| 28 | 27 | com12 30 |
. . . . . . . . . 10
|
| 29 | 10, 11, 28 | syl2an 289 |
. . . . . . . . 9
|
| 30 | 29 | 3adant3 1041 |
. . . . . . . 8
|
| 31 | 9, 30 | sylbi 121 |
. . . . . . 7
|
| 32 | 31 | imp 124 |
. . . . . 6
|
| 33 | 32 | eleq2d 2299 |
. . . . 5
|
| 34 | 33 | biimpa 296 |
. . . 4
|
| 35 | 0zd 9454 |
. . . . . 6
| |
| 36 | elfz2 10207 |
. . . . . . . 8
| |
| 37 | zsubcl 9483 |
. . . . . . . . . . 11
| |
| 38 | 37 | ancoms 268 |
. . . . . . . . . 10
|
| 39 | 38 | 3adant2 1040 |
. . . . . . . . 9
|
| 40 | 39 | adantr 276 |
. . . . . . . 8
|
| 41 | 36, 40 | sylbi 121 |
. . . . . . 7
|
| 42 | 41 | adantl 277 |
. . . . . 6
|
| 43 | 6, 35, 42 | 3jca 1201 |
. . . . 5
|
| 44 | 43 | adantr 276 |
. . . 4
|
| 45 | fzosubel2 10396 |
. . . 4
| |
| 46 | 34, 44, 45 | syl2anc 411 |
. . 3
|
| 47 | 46 | ex 115 |
. 2
|
| 48 | 8, 47 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 |
| This theorem is referenced by: pfxccatin12lem2 11258 |
| Copyright terms: Public domain | W3C validator |