Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0zd | Unicode version |
Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0zd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9198 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cc0 7749 cz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1re 7843 ax-addrcl 7846 ax-rnegex 7858 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-neg 8068 df-z 9188 |
This theorem is referenced by: fzctr 10064 fzosubel3 10127 frecfzennn 10357 frechashgf1o 10359 0tonninf 10370 1tonninf 10371 exp3val 10453 exp0 10455 bcval 10658 bccmpl 10663 bcval5 10672 bcpasc 10675 bccl 10676 hashcl 10690 hashfiv01gt1 10691 hashfz1 10692 hashen 10693 fihashneq0 10704 omgadd 10711 fihashdom 10712 fiubz 10738 fnfz0hash 10741 ffzo0hash 10743 fzomaxdiflem 11050 fsumzcl 11339 fisum0diag 11378 fisum0diag2 11384 binomlem 11420 binom1dif 11424 isumnn0nn 11430 expcnvre 11440 explecnv 11442 pwm1geoserap1 11445 geolim 11448 geolim2 11449 geo2sum 11451 geoisum 11454 geoisumr 11455 mertenslemub 11471 mertenslemi1 11472 mertenslem2 11473 mertensabs 11474 fprod0diagfz 11565 eftcl 11591 efval 11598 eff 11600 efcvg 11603 efcvgfsum 11604 reefcl 11605 ege2le3 11608 efcj 11610 efaddlem 11611 eftlub 11627 effsumlt 11629 efgt1p2 11632 efgt1p 11633 eflegeo 11638 eirraplem 11713 dvdsmodexp 11731 dvdsmod 11796 gcdn0gt0 11907 gcdaddm 11913 gcdmultipled 11922 bezoutlemle 11937 nn0seqcvgd 11969 alginv 11975 algcvg 11976 algcvga 11979 algfx 11980 eucalgval2 11981 eucalgcvga 11986 eucalg 11987 lcmcllem 11995 lcmid 12008 mulgcddvds 12022 divgcdcoprmex 12030 cncongr1 12031 cncongr2 12032 phiprmpw 12150 modprm0 12182 pcpremul 12221 pceu 12223 pcmul 12229 pcqmul 12231 pcge0 12240 pcdvdsb 12247 pcneg 12252 pcgcd1 12255 pc2dvds 12257 pcz 12259 dvdsprmpweqle 12264 qexpz 12278 ennnfonelemjn 12331 ennnfonelemh 12333 ennnfonelem0 12334 ennnfonelem1 12336 ennnfonelemom 12337 ennnfonelemkh 12341 ennnfonelemhf1o 12342 ennnfonelemex 12343 ennnfonelemrn 12348 ennnfonelemnn0 12351 ctinfomlemom 12356 lgsval 13505 lgsfvalg 13506 lgscllem 13508 lgsval2lem 13511 lgsneg1 13526 lgsne0 13539 012of 13835 2o01f 13836 isomninnlem 13869 iswomninnlem 13888 ismkvnnlem 13891 dceqnconst 13898 dcapnconst 13899 |
Copyright terms: Public domain | W3C validator |