Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0zd | Unicode version |
Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0zd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9223 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cc0 7774 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 |
This theorem is referenced by: fzctr 10089 fzosubel3 10152 frecfzennn 10382 frechashgf1o 10384 0tonninf 10395 1tonninf 10396 exp3val 10478 exp0 10480 bcval 10683 bccmpl 10688 bcval5 10697 bcpasc 10700 bccl 10701 hashcl 10715 hashfiv01gt1 10716 hashfz1 10717 hashen 10718 fihashneq0 10729 omgadd 10737 fihashdom 10738 fiubz 10764 fnfz0hash 10767 ffzo0hash 10769 fzomaxdiflem 11076 fsumzcl 11365 fisum0diag 11404 fisum0diag2 11410 binomlem 11446 binom1dif 11450 isumnn0nn 11456 expcnvre 11466 explecnv 11468 pwm1geoserap1 11471 geolim 11474 geolim2 11475 geo2sum 11477 geoisum 11480 geoisumr 11481 mertenslemub 11497 mertenslemi1 11498 mertenslem2 11499 mertensabs 11500 fprod0diagfz 11591 eftcl 11617 efval 11624 eff 11626 efcvg 11629 efcvgfsum 11630 reefcl 11631 ege2le3 11634 efcj 11636 efaddlem 11637 eftlub 11653 effsumlt 11655 efgt1p2 11658 efgt1p 11659 eflegeo 11664 eirraplem 11739 dvdsmodexp 11757 dvdsmod 11822 gcdn0gt0 11933 gcdaddm 11939 gcdmultipled 11948 bezoutlemle 11963 nn0seqcvgd 11995 alginv 12001 algcvg 12002 algcvga 12005 algfx 12006 eucalgval2 12007 eucalgcvga 12012 eucalg 12013 lcmcllem 12021 lcmid 12034 mulgcddvds 12048 divgcdcoprmex 12056 cncongr1 12057 cncongr2 12058 phiprmpw 12176 modprm0 12208 pcpremul 12247 pceu 12249 pcmul 12255 pcqmul 12257 pcge0 12266 pcdvdsb 12273 pcneg 12278 pcgcd1 12281 pc2dvds 12283 pcz 12285 dvdsprmpweqle 12290 qexpz 12304 ennnfonelemjn 12357 ennnfonelemh 12359 ennnfonelem0 12360 ennnfonelem1 12362 ennnfonelemom 12363 ennnfonelemkh 12367 ennnfonelemhf1o 12368 ennnfonelemex 12369 ennnfonelemrn 12374 ennnfonelemnn0 12377 ctinfomlemom 12382 lgsval 13699 lgsfvalg 13700 lgscllem 13702 lgsval2lem 13705 lgsneg1 13720 lgsne0 13733 012of 14028 2o01f 14029 isomninnlem 14062 iswomninnlem 14081 ismkvnnlem 14084 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |