![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0zd | Unicode version |
Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0zd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9263 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-1re 7904 ax-addrcl 7907 ax-rnegex 7919 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-un 3133 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-iota 5178 df-fv 5224 df-ov 5877 df-neg 8130 df-z 9253 |
This theorem is referenced by: fzctr 10132 fzosubel3 10195 frecfzennn 10425 frechashgf1o 10427 0tonninf 10438 1tonninf 10439 exp3val 10521 exp0 10523 bcval 10728 bccmpl 10733 bcval5 10742 bcpasc 10745 bccl 10746 hashcl 10760 hashfiv01gt1 10761 hashfz1 10762 hashen 10763 fihashneq0 10773 omgadd 10781 fihashdom 10782 fiubz 10808 fnfz0hash 10811 ffzo0hash 10813 fzomaxdiflem 11120 fsumzcl 11409 fisum0diag 11448 fisum0diag2 11454 binomlem 11490 binom1dif 11494 isumnn0nn 11500 expcnvre 11510 explecnv 11512 pwm1geoserap1 11515 geolim 11518 geolim2 11519 geo2sum 11521 geoisum 11524 geoisumr 11525 mertenslemub 11541 mertenslemi1 11542 mertenslem2 11543 mertensabs 11544 fprod0diagfz 11635 eftcl 11661 efval 11668 eff 11670 efcvg 11673 efcvgfsum 11674 reefcl 11675 ege2le3 11678 efcj 11680 efaddlem 11681 eftlub 11697 effsumlt 11699 efgt1p2 11702 efgt1p 11703 eflegeo 11708 eirraplem 11783 dvdsmodexp 11801 dvdsmod 11867 gcdn0gt0 11978 gcdaddm 11984 gcdmultipled 11993 bezoutlemle 12008 nn0seqcvgd 12040 alginv 12046 algcvg 12047 algcvga 12050 algfx 12051 eucalgval2 12052 eucalgcvga 12057 eucalg 12058 lcmcllem 12066 lcmid 12079 mulgcddvds 12093 divgcdcoprmex 12101 cncongr1 12102 cncongr2 12103 phiprmpw 12221 modprm0 12253 pcpremul 12292 pceu 12294 pcmul 12300 pcqmul 12302 pcge0 12311 pcdvdsb 12318 pcneg 12323 pcgcd1 12326 pc2dvds 12328 pcz 12330 dvdsprmpweqle 12335 qexpz 12349 ennnfonelemjn 12402 ennnfonelemh 12404 ennnfonelem0 12405 ennnfonelem1 12407 ennnfonelemom 12408 ennnfonelemkh 12412 ennnfonelemhf1o 12413 ennnfonelemex 12414 ennnfonelemrn 12419 ennnfonelemnn0 12422 ctinfomlemom 12427 mulgval 12985 mulgfng 12986 subgmulg 13046 lgsval 14375 lgsfvalg 14376 lgscllem 14378 lgsval2lem 14381 lgsneg1 14396 lgsne0 14409 012of 14715 2o01f 14716 isomninnlem 14748 iswomninnlem 14767 ismkvnnlem 14770 dceqnconst 14777 dcapnconst 14778 |
Copyright terms: Public domain | W3C validator |