![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0zd | Unicode version |
Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0zd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9264 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-1re 7905 ax-addrcl 7908 ax-rnegex 7920 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-un 3134 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-iota 5179 df-fv 5225 df-ov 5878 df-neg 8131 df-z 9254 |
This theorem is referenced by: fzctr 10133 fzosubel3 10196 frecfzennn 10426 frechashgf1o 10428 0tonninf 10439 1tonninf 10440 exp3val 10522 exp0 10524 bcval 10729 bccmpl 10734 bcval5 10743 bcpasc 10746 bccl 10747 hashcl 10761 hashfiv01gt1 10762 hashfz1 10763 hashen 10764 fihashneq0 10774 omgadd 10782 fihashdom 10783 fiubz 10809 fnfz0hash 10812 ffzo0hash 10814 fzomaxdiflem 11121 fsumzcl 11410 fisum0diag 11449 fisum0diag2 11455 binomlem 11491 binom1dif 11495 isumnn0nn 11501 expcnvre 11511 explecnv 11513 pwm1geoserap1 11516 geolim 11519 geolim2 11520 geo2sum 11522 geoisum 11525 geoisumr 11526 mertenslemub 11542 mertenslemi1 11543 mertenslem2 11544 mertensabs 11545 fprod0diagfz 11636 eftcl 11662 efval 11669 eff 11671 efcvg 11674 efcvgfsum 11675 reefcl 11676 ege2le3 11679 efcj 11681 efaddlem 11682 eftlub 11698 effsumlt 11700 efgt1p2 11703 efgt1p 11704 eflegeo 11709 eirraplem 11784 dvdsmodexp 11802 dvdsmod 11868 gcdn0gt0 11979 gcdaddm 11985 gcdmultipled 11994 bezoutlemle 12009 nn0seqcvgd 12041 alginv 12047 algcvg 12048 algcvga 12051 algfx 12052 eucalgval2 12053 eucalgcvga 12058 eucalg 12059 lcmcllem 12067 lcmid 12080 mulgcddvds 12094 divgcdcoprmex 12102 cncongr1 12103 cncongr2 12104 phiprmpw 12222 modprm0 12254 pcpremul 12293 pceu 12295 pcmul 12301 pcqmul 12303 pcge0 12312 pcdvdsb 12319 pcneg 12324 pcgcd1 12327 pc2dvds 12329 pcz 12331 dvdsprmpweqle 12336 qexpz 12350 ennnfonelemjn 12403 ennnfonelemh 12405 ennnfonelem0 12406 ennnfonelem1 12408 ennnfonelemom 12409 ennnfonelemkh 12413 ennnfonelemhf1o 12414 ennnfonelemex 12415 ennnfonelemrn 12420 ennnfonelemnn0 12423 ctinfomlemom 12428 mulgval 12986 mulgfng 12987 subgmulg 13048 lgsval 14408 lgsfvalg 14409 lgscllem 14411 lgsval2lem 14414 lgsneg1 14429 lgsne0 14442 012of 14748 2o01f 14749 isomninnlem 14781 iswomninnlem 14800 ismkvnnlem 14803 dceqnconst 14810 dcapnconst 14811 |
Copyright terms: Public domain | W3C validator |