![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0zd | Unicode version |
Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0zd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9328 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-neg 8193 df-z 9318 |
This theorem is referenced by: fzctr 10199 fzosubel3 10263 frecfzennn 10497 frechashgf1o 10499 0tonninf 10511 1tonninf 10512 exp3val 10612 exp0 10614 bcval 10820 bccmpl 10825 bcval5 10834 bcpasc 10837 bccl 10838 hashcl 10852 hashfiv01gt1 10853 hashfz1 10854 hashen 10855 fihashneq0 10865 omgadd 10873 fihashdom 10874 fiubz 10900 fnfz0hash 10903 ffzo0hash 10905 wrdval 10917 snopiswrd 10924 wrdsymb0 10946 fzomaxdiflem 11256 fsumzcl 11545 fisum0diag 11584 fisum0diag2 11590 binomlem 11626 binom1dif 11630 isumnn0nn 11636 expcnvre 11646 explecnv 11648 pwm1geoserap1 11651 geolim 11654 geolim2 11655 geo2sum 11657 geoisum 11660 geoisumr 11661 mertenslemub 11677 mertenslemi1 11678 mertenslem2 11679 mertensabs 11680 fprod0diagfz 11771 eftcl 11797 efval 11804 eff 11806 efcvg 11809 efcvgfsum 11810 reefcl 11811 ege2le3 11814 efcj 11816 efaddlem 11817 eftlub 11833 effsumlt 11835 efgt1p2 11838 efgt1p 11839 eflegeo 11844 eirraplem 11920 dvdsmodexp 11938 dvdsmod 12004 gcdn0gt0 12115 gcdaddm 12121 gcdmultipled 12130 bezoutlemle 12145 nninfctlemfo 12177 nn0seqcvgd 12179 alginv 12185 algcvg 12186 algcvga 12189 algfx 12190 eucalgval2 12191 eucalgcvga 12196 eucalg 12197 lcmcllem 12205 lcmid 12218 mulgcddvds 12232 divgcdcoprmex 12240 cncongr1 12241 cncongr2 12242 phiprmpw 12360 modprm0 12392 pcpremul 12431 pceu 12433 pcmul 12439 pcqmul 12441 pcge0 12451 pcdvdsb 12458 pcneg 12463 pcgcd1 12466 pc2dvds 12468 pcz 12470 dvdsprmpweqle 12475 qexpz 12490 4sqlemafi 12533 4sqlem11 12539 ennnfonelemjn 12559 ennnfonelemh 12561 ennnfonelem0 12562 ennnfonelem1 12564 ennnfonelemom 12565 ennnfonelemkh 12569 ennnfonelemhf1o 12570 ennnfonelemex 12571 ennnfonelemrn 12576 ennnfonelemnn0 12579 ctinfomlemom 12584 mulgval 13192 mulgfng 13194 subgmulg 13258 elply2 14881 plyf 14883 elplyd 14887 ply1termlem 14888 plyaddlem1 14893 plymullem1 14894 plymullem 14896 lgsval 15120 lgsfvalg 15121 lgscllem 15123 lgsval2lem 15126 lgsneg1 15141 lgsne0 15154 012of 15486 2o01f 15487 isomninnlem 15520 iswomninnlem 15539 ismkvnnlem 15542 dceqnconst 15550 dcapnconst 15551 |
Copyright terms: Public domain | W3C validator |