Proof of Theorem prmuloclemcalc
Step | Hyp | Ref
| Expression |
1 | | prmuloclemcalc.axb |
. . . . . . 7
⊢ (𝜑 → (𝐴 +Q 𝑋) = 𝐵) |
2 | 1 | oveq2d 5869 |
. . . . . 6
⊢ (𝜑 → (𝑈 ·Q (𝐴 +Q
𝑋)) = (𝑈 ·Q 𝐵)) |
3 | | prmuloclemcalc.ru |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 <Q 𝑈) |
4 | | ltrelnq 7327 |
. . . . . . . . . 10
⊢
<Q ⊆ (Q ×
Q) |
5 | 4 | brel 4663 |
. . . . . . . . 9
⊢ (𝑅 <Q
𝑈 → (𝑅 ∈ Q ∧ 𝑈 ∈
Q)) |
6 | 3, 5 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 ∈ Q ∧ 𝑈 ∈
Q)) |
7 | 6 | simprd 113 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ Q) |
8 | | prmuloclemcalc.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ Q) |
9 | | prmuloclemcalc.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ Q) |
10 | | distrnqg 7349 |
. . . . . . 7
⊢ ((𝑈 ∈ Q ∧
𝐴 ∈ Q
∧ 𝑋 ∈
Q) → (𝑈
·Q (𝐴 +Q 𝑋)) = ((𝑈 ·Q 𝐴) +Q
(𝑈
·Q 𝑋))) |
11 | 7, 8, 9, 10 | syl3anc 1233 |
. . . . . 6
⊢ (𝜑 → (𝑈 ·Q (𝐴 +Q
𝑋)) = ((𝑈 ·Q 𝐴) +Q
(𝑈
·Q 𝑋))) |
12 | 2, 11 | eqtr3d 2205 |
. . . . 5
⊢ (𝜑 → (𝑈 ·Q 𝐵) = ((𝑈 ·Q 𝐴) +Q
(𝑈
·Q 𝑋))) |
13 | | prmuloclemcalc.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ Q) |
14 | | mulcomnqg 7345 |
. . . . . . 7
⊢ ((𝐵 ∈ Q ∧
𝑈 ∈ Q)
→ (𝐵
·Q 𝑈) = (𝑈 ·Q 𝐵)) |
15 | 13, 7, 14 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → (𝐵 ·Q 𝑈) = (𝑈 ·Q 𝐵)) |
16 | | prmuloclemcalc.udp |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 <Q (𝐷 +Q
𝑃)) |
17 | | ltmnqi 7365 |
. . . . . . . . . 10
⊢ ((𝑈 <Q
(𝐷
+Q 𝑃) ∧ 𝐵 ∈ Q) → (𝐵
·Q 𝑈) <Q (𝐵
·Q (𝐷 +Q 𝑃))) |
18 | 16, 13, 17 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ·Q 𝑈) <Q
(𝐵
·Q (𝐷 +Q 𝑃))) |
19 | | prmuloclemcalc.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ Q) |
20 | | prmuloclemcalc.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ Q) |
21 | | distrnqg 7349 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ Q ∧
𝐷 ∈ Q
∧ 𝑃 ∈
Q) → (𝐵
·Q (𝐷 +Q 𝑃)) = ((𝐵 ·Q 𝐷) +Q
(𝐵
·Q 𝑃))) |
22 | 13, 19, 20, 21 | syl3anc 1233 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ·Q (𝐷 +Q
𝑃)) = ((𝐵 ·Q 𝐷) +Q
(𝐵
·Q 𝑃))) |
23 | 18, 22 | breqtrd 4015 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ·Q 𝑈) <Q
((𝐵
·Q 𝐷) +Q (𝐵
·Q 𝑃))) |
24 | | mulcomnqg 7345 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Q ∧
𝐵 ∈ Q)
→ (𝑃
·Q 𝐵) = (𝐵 ·Q 𝑃)) |
25 | 20, 13, 24 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 ·Q 𝐵) = (𝐵 ·Q 𝑃)) |
26 | | prmuloclemcalc.pbrx |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 ·Q 𝐵) <Q
(𝑅
·Q 𝑋)) |
27 | 25, 26 | eqbrtrrd 4013 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ·Q 𝑃) <Q
(𝑅
·Q 𝑋)) |
28 | | mulclnq 7338 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ Q ∧
𝐷 ∈ Q)
→ (𝐵
·Q 𝐷) ∈ Q) |
29 | 13, 19, 28 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ·Q 𝐷) ∈
Q) |
30 | | ltanqi 7364 |
. . . . . . . . 9
⊢ (((𝐵
·Q 𝑃) <Q (𝑅
·Q 𝑋) ∧ (𝐵 ·Q 𝐷) ∈ Q) →
((𝐵
·Q 𝐷) +Q (𝐵
·Q 𝑃)) <Q ((𝐵
·Q 𝐷) +Q (𝑅
·Q 𝑋))) |
31 | 27, 29, 30 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 ·Q 𝐷) +Q
(𝐵
·Q 𝑃)) <Q ((𝐵
·Q 𝐷) +Q (𝑅
·Q 𝑋))) |
32 | | ltsonq 7360 |
. . . . . . . . 9
⊢
<Q Or Q |
33 | 32, 4 | sotri 5006 |
. . . . . . . 8
⊢ (((𝐵
·Q 𝑈) <Q ((𝐵
·Q 𝐷) +Q (𝐵
·Q 𝑃)) ∧ ((𝐵 ·Q 𝐷) +Q
(𝐵
·Q 𝑃)) <Q ((𝐵
·Q 𝐷) +Q (𝑅
·Q 𝑋))) → (𝐵 ·Q 𝑈) <Q
((𝐵
·Q 𝐷) +Q (𝑅
·Q 𝑋))) |
34 | 23, 31, 33 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ·Q 𝑈) <Q
((𝐵
·Q 𝐷) +Q (𝑅
·Q 𝑋))) |
35 | | ltmnqi 7365 |
. . . . . . . . . 10
⊢ ((𝑅 <Q
𝑈 ∧ 𝑋 ∈ Q) → (𝑋
·Q 𝑅) <Q (𝑋
·Q 𝑈)) |
36 | 3, 9, 35 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ·Q 𝑅) <Q
(𝑋
·Q 𝑈)) |
37 | 6 | simpld 111 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Q) |
38 | | mulcomnqg 7345 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ Q ∧
𝑅 ∈ Q)
→ (𝑋
·Q 𝑅) = (𝑅 ·Q 𝑋)) |
39 | 9, 37, 38 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ·Q 𝑅) = (𝑅 ·Q 𝑋)) |
40 | | mulcomnqg 7345 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ Q ∧
𝑈 ∈ Q)
→ (𝑋
·Q 𝑈) = (𝑈 ·Q 𝑋)) |
41 | 9, 7, 40 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ·Q 𝑈) = (𝑈 ·Q 𝑋)) |
42 | 36, 39, 41 | 3brtr3d 4020 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 ·Q 𝑋) <Q
(𝑈
·Q 𝑋)) |
43 | | ltanqi 7364 |
. . . . . . . 8
⊢ (((𝑅
·Q 𝑋) <Q (𝑈
·Q 𝑋) ∧ (𝐵 ·Q 𝐷) ∈ Q) →
((𝐵
·Q 𝐷) +Q (𝑅
·Q 𝑋)) <Q ((𝐵
·Q 𝐷) +Q (𝑈
·Q 𝑋))) |
44 | 42, 29, 43 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 ·Q 𝐷) +Q
(𝑅
·Q 𝑋)) <Q ((𝐵
·Q 𝐷) +Q (𝑈
·Q 𝑋))) |
45 | 32, 4 | sotri 5006 |
. . . . . . 7
⊢ (((𝐵
·Q 𝑈) <Q ((𝐵
·Q 𝐷) +Q (𝑅
·Q 𝑋)) ∧ ((𝐵 ·Q 𝐷) +Q
(𝑅
·Q 𝑋)) <Q ((𝐵
·Q 𝐷) +Q (𝑈
·Q 𝑋))) → (𝐵 ·Q 𝑈) <Q
((𝐵
·Q 𝐷) +Q (𝑈
·Q 𝑋))) |
46 | 34, 44, 45 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → (𝐵 ·Q 𝑈) <Q
((𝐵
·Q 𝐷) +Q (𝑈
·Q 𝑋))) |
47 | 15, 46 | eqbrtrrd 4013 |
. . . . 5
⊢ (𝜑 → (𝑈 ·Q 𝐵) <Q
((𝐵
·Q 𝐷) +Q (𝑈
·Q 𝑋))) |
48 | 12, 47 | eqbrtrrd 4013 |
. . . 4
⊢ (𝜑 → ((𝑈 ·Q 𝐴) +Q
(𝑈
·Q 𝑋)) <Q ((𝐵
·Q 𝐷) +Q (𝑈
·Q 𝑋))) |
49 | | mulclnq 7338 |
. . . . . 6
⊢ ((𝑈 ∈ Q ∧
𝐴 ∈ Q)
→ (𝑈
·Q 𝐴) ∈ Q) |
50 | 7, 8, 49 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → (𝑈 ·Q 𝐴) ∈
Q) |
51 | | mulclnq 7338 |
. . . . . 6
⊢ ((𝑈 ∈ Q ∧
𝑋 ∈ Q)
→ (𝑈
·Q 𝑋) ∈ Q) |
52 | 7, 9, 51 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → (𝑈 ·Q 𝑋) ∈
Q) |
53 | | addcomnqg 7343 |
. . . . 5
⊢ (((𝑈
·Q 𝐴) ∈ Q ∧ (𝑈
·Q 𝑋) ∈ Q) → ((𝑈
·Q 𝐴) +Q (𝑈
·Q 𝑋)) = ((𝑈 ·Q 𝑋) +Q
(𝑈
·Q 𝐴))) |
54 | 50, 52, 53 | syl2anc 409 |
. . . 4
⊢ (𝜑 → ((𝑈 ·Q 𝐴) +Q
(𝑈
·Q 𝑋)) = ((𝑈 ·Q 𝑋) +Q
(𝑈
·Q 𝐴))) |
55 | | addcomnqg 7343 |
. . . . 5
⊢ (((𝐵
·Q 𝐷) ∈ Q ∧ (𝑈
·Q 𝑋) ∈ Q) → ((𝐵
·Q 𝐷) +Q (𝑈
·Q 𝑋)) = ((𝑈 ·Q 𝑋) +Q
(𝐵
·Q 𝐷))) |
56 | 29, 52, 55 | syl2anc 409 |
. . . 4
⊢ (𝜑 → ((𝐵 ·Q 𝐷) +Q
(𝑈
·Q 𝑋)) = ((𝑈 ·Q 𝑋) +Q
(𝐵
·Q 𝐷))) |
57 | 48, 54, 56 | 3brtr3d 4020 |
. . 3
⊢ (𝜑 → ((𝑈 ·Q 𝑋) +Q
(𝑈
·Q 𝐴)) <Q ((𝑈
·Q 𝑋) +Q (𝐵
·Q 𝐷))) |
58 | | ltanqg 7362 |
. . . 4
⊢ (((𝑈
·Q 𝐴) ∈ Q ∧ (𝐵
·Q 𝐷) ∈ Q ∧ (𝑈
·Q 𝑋) ∈ Q) → ((𝑈
·Q 𝐴) <Q (𝐵
·Q 𝐷) ↔ ((𝑈 ·Q 𝑋) +Q
(𝑈
·Q 𝐴)) <Q ((𝑈
·Q 𝑋) +Q (𝐵
·Q 𝐷)))) |
59 | 50, 29, 52, 58 | syl3anc 1233 |
. . 3
⊢ (𝜑 → ((𝑈 ·Q 𝐴) <Q
(𝐵
·Q 𝐷) ↔ ((𝑈 ·Q 𝑋) +Q
(𝑈
·Q 𝐴)) <Q ((𝑈
·Q 𝑋) +Q (𝐵
·Q 𝐷)))) |
60 | 57, 59 | mpbird 166 |
. 2
⊢ (𝜑 → (𝑈 ·Q 𝐴) <Q
(𝐵
·Q 𝐷)) |
61 | | mulcomnqg 7345 |
. . 3
⊢ ((𝐵 ∈ Q ∧
𝐷 ∈ Q)
→ (𝐵
·Q 𝐷) = (𝐷 ·Q 𝐵)) |
62 | 13, 19, 61 | syl2anc 409 |
. 2
⊢ (𝜑 → (𝐵 ·Q 𝐷) = (𝐷 ·Q 𝐵)) |
63 | 60, 62 | breqtrd 4015 |
1
⊢ (𝜑 → (𝑈 ·Q 𝐴) <Q
(𝐷
·Q 𝐵)) |