ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdc Unicode version

Theorem prodrbdc 11717
Description: Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrb.4  |-  ( ph  ->  M  e.  ZZ )
prodrb.5  |-  ( ph  ->  N  e.  ZZ )
prodrb.6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
prodrb.7  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
prodrbdc.mdc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
prodrbdc.ndc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
Assertion
Ref Expression
prodrbdc  |-  ( ph  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodrbdc
StepHypRef Expression
1 prodmo.1 . . 3  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
2 prodmo.2 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
3 prodrb.4 . . 3  |-  ( ph  ->  M  e.  ZZ )
4 prodrb.5 . . 3  |-  ( ph  ->  N  e.  ZZ )
5 prodrb.6 . . 3  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
6 prodrb.7 . . 3  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
7 prodrbdc.mdc . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
8 prodrbdc.ndc . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  -> DECID  k  e.  A
)
91, 2, 3, 4, 5, 6, 7, 8prodrbdclem2 11716 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
101, 2, 4, 3, 6, 5, 8, 7prodrbdclem2 11716 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq N (  x.  ,  F )  ~~>  C  <->  seq M (  x.  ,  F )  ~~>  C ) )
1110bicomd 141 . 2  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
12 uztric 9614 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
133, 4, 12syl2anc 411 . 2  |-  ( ph  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
149, 11, 13mpjaodan 799 1  |-  ( ph  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164    C_ wss 3153   ifcif 3557   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254   CCcc 7870   1c1 7873    x. cmul 7877   ZZcz 9317   ZZ>=cuz 9592    seqcseq 10518    ~~> cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-clim 11422
This theorem is referenced by:  prodmodc  11721  zproddc  11722
  Copyright terms: Public domain W3C validator