ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdc GIF version

Theorem prodrbdc 12093
Description: Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.4 (𝜑𝑀 ∈ ℤ)
prodrb.5 (𝜑𝑁 ∈ ℤ)
prodrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
prodrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
prodrbdc.mdc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
prodrbdc.ndc ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)
Assertion
Ref Expression
prodrbdc (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodrbdc
StepHypRef Expression
1 prodmo.1 . . 3 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
2 prodmo.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3 prodrb.4 . . 3 (𝜑𝑀 ∈ ℤ)
4 prodrb.5 . . 3 (𝜑𝑁 ∈ ℤ)
5 prodrb.6 . . 3 (𝜑𝐴 ⊆ (ℤ𝑀))
6 prodrb.7 . . 3 (𝜑𝐴 ⊆ (ℤ𝑁))
7 prodrbdc.mdc . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
8 prodrbdc.ndc . . 3 ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)
91, 2, 3, 4, 5, 6, 7, 8prodrbdclem2 12092 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
101, 2, 4, 3, 6, 5, 8, 7prodrbdclem2 12092 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑁( · , 𝐹) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶))
1110bicomd 141 . 2 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
12 uztric 9752 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
133, 4, 12syl2anc 411 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
149, 11, 13mpjaodan 803 1 (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wss 3197  ifcif 3602   class class class wbr 4083  cmpt 4145  cfv 5318  cc 8005  1c1 8008   · cmul 8012  cz 9454  cuz 9730  seqcseq 10677  cli 11797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-clim 11798
This theorem is referenced by:  prodmodc  12097  zproddc  12098
  Copyright terms: Public domain W3C validator