Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodrbdc | GIF version |
Description: Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodmo.1 | ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
prodmo.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
prodrb.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
prodrb.5 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
prodrb.6 | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
prodrb.7 | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) |
prodrbdc.mdc | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
prodrbdc.ndc | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) |
Ref | Expression |
---|---|
prodrbdc | ⊢ (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodmo.1 | . . 3 ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) | |
2 | prodmo.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
3 | prodrb.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | prodrb.5 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
5 | prodrb.6 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
6 | prodrb.7 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) | |
7 | prodrbdc.mdc | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) | |
8 | prodrbdc.ndc | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | prodrbdclem2 11504 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶)) |
10 | 1, 2, 4, 3, 6, 5, 8, 7 | prodrbdclem2 11504 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (seq𝑁( · , 𝐹) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶)) |
11 | 10 | bicomd 140 | . 2 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶)) |
12 | uztric 9479 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | |
13 | 3, 4, 12 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) |
14 | 9, 11, 13 | mpjaodan 788 | 1 ⊢ (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 = wceq 1342 ∈ wcel 2135 ⊆ wss 3112 ifcif 3516 class class class wbr 3977 ↦ cmpt 4038 ‘cfv 5183 ℂcc 7743 1c1 7746 · cmul 7750 ℤcz 9183 ℤ≥cuz 9458 seqcseq 10371 ⇝ cli 11209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-iinf 4560 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-if 3517 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-id 4266 df-iord 4339 df-on 4341 df-ilim 4342 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-1st 6101 df-2nd 6102 df-recs 6265 df-frec 6351 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-inn 8850 df-n0 9107 df-z 9184 df-uz 9459 df-fz 9937 df-fzo 10069 df-seqfrec 10372 df-clim 11210 |
This theorem is referenced by: prodmodc 11509 zproddc 11510 |
Copyright terms: Public domain | W3C validator |