ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpsr Unicode version

Theorem fnpsr 14297
Description: The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
Assertion
Ref Expression
fnpsr  |- mPwSer  Fn  ( _V  X.  _V )

Proof of Theorem fnpsr
Dummy variables  b  d  f  g  h  i  k  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 14294 . 2  |- mPwSer  =  ( i  e.  _V , 
r  e.  _V  |->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
2 fnmap 6723 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
3 nn0ex 9272 . . . . 5  |-  NN0  e.  _V
4 vex 2766 . . . . 5  |-  i  e. 
_V
5 fnovex 5958 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  NN0  e.  _V  /\  i  e. 
_V )  ->  ( NN0  ^m  i )  e. 
_V )
62, 3, 4, 5mp3an 1348 . . . 4  |-  ( NN0 
^m  i )  e. 
_V
76rabex 4178 . . 3  |-  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  e.  _V
8 basfn 12761 . . . . . 6  |-  Base  Fn  _V
9 vex 2766 . . . . . 6  |-  r  e. 
_V
10 funfvex 5578 . . . . . . 7  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
1110funfni 5361 . . . . . 6  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
128, 9, 11mp2an 426 . . . . 5  |-  ( Base `  r )  e.  _V
13 vex 2766 . . . . 5  |-  d  e. 
_V
14 fnovex 5958 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( Base `  r )  e. 
_V  /\  d  e.  _V )  ->  ( (
Base `  r )  ^m  d )  e.  _V )
152, 12, 13, 14mp3an 1348 . . . 4  |-  ( (
Base `  r )  ^m  d )  e.  _V
16 basendxnn 12759 . . . . . . 7  |-  ( Base `  ndx )  e.  NN
17 vex 2766 . . . . . . 7  |-  b  e. 
_V
18 opexg 4262 . . . . . . 7  |-  ( ( ( Base `  ndx )  e.  NN  /\  b  e.  _V )  ->  <. ( Base `  ndx ) ,  b >.  e.  _V )
1916, 17, 18mp2an 426 . . . . . 6  |-  <. ( Base `  ndx ) ,  b >.  e.  _V
20 plusgndxnn 12814 . . . . . . 7  |-  ( +g  ` 
ndx )  e.  NN
2117a1i 9 . . . . . . . . 9  |-  ( T. 
->  b  e.  _V )
2221, 21ofmresex 6203 . . . . . . . 8  |-  ( T. 
->  (  oF
( +g  `  r )  |`  ( b  X.  b
) )  e.  _V )
2322mptru 1373 . . . . . . 7  |-  (  oF ( +g  `  r
)  |`  ( b  X.  b ) )  e. 
_V
24 opexg 4262 . . . . . . 7  |-  ( ( ( +g  `  ndx )  e.  NN  /\  (  oF ( +g  `  r )  |`  (
b  X.  b ) )  e.  _V )  -> 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >.  e.  _V )
2520, 23, 24mp2an 426 . . . . . 6  |-  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >.  e.  _V
26 mulrslid 12834 . . . . . . . . 9  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2726simpri 113 . . . . . . . 8  |-  ( .r
`  ndx )  e.  NN
2827elexi 2775 . . . . . . 7  |-  ( .r
`  ndx )  e.  _V
2917, 17mpoex 6281 . . . . . . 7  |-  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )  e.  _V
3028, 29opex 4263 . . . . . 6  |-  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b 
|->  ( k  e.  d 
|->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >.  e.  _V
31 tpexg 4480 . . . . . 6  |-  ( (
<. ( Base `  ndx ) ,  b >.  e. 
_V  /\  <. ( +g  ` 
ndx ) ,  (  oF ( +g  `  r )  |`  (
b  X.  b ) ) >.  e.  _V  /\ 
<. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >.  e.  _V )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  e.  _V )
3219, 25, 30, 31mp3an 1348 . . . . 5  |-  { <. (
Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  e.  _V
33 scaslid 12855 . . . . . . . . 9  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
3433simpri 113 . . . . . . . 8  |-  (Scalar `  ndx )  e.  NN
3534elexi 2775 . . . . . . 7  |-  (Scalar `  ndx )  e.  _V
3635, 9opex 4263 . . . . . 6  |-  <. (Scalar ` 
ndx ) ,  r
>.  e.  _V
37 vscaslid 12865 . . . . . . . . 9  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
3837simpri 113 . . . . . . . 8  |-  ( .s
`  ndx )  e.  NN
3938elexi 2775 . . . . . . 7  |-  ( .s
`  ndx )  e.  _V
4012, 17mpoex 6281 . . . . . . 7  |-  ( x  e.  ( Base `  r
) ,  f  e.  b  |->  ( ( d  X.  { x }
)  oF ( .r `  r ) f ) )  e. 
_V
4139, 40opex 4263 . . . . . 6  |-  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  r ) ,  f  e.  b  |->  ( ( d  X. 
{ x } )  oF ( .r
`  r ) f ) ) >.  e.  _V
42 tsetndxnn 12891 . . . . . . . 8  |-  (TopSet `  ndx )  e.  NN
4342elexi 2775 . . . . . . 7  |-  (TopSet `  ndx )  e.  _V
44 topnfn 12946 . . . . . . . . . . 11  |-  TopOpen  Fn  _V
45 funfvex 5578 . . . . . . . . . . . 12  |-  ( ( Fun  TopOpen  /\  r  e.  dom 
TopOpen )  ->  ( TopOpen `  r )  e.  _V )
4645funfni 5361 . . . . . . . . . . 11  |-  ( (
TopOpen  Fn  _V  /\  r  e.  _V )  ->  ( TopOpen
`  r )  e. 
_V )
4744, 9, 46mp2an 426 . . . . . . . . . 10  |-  ( TopOpen `  r )  e.  _V
4847snex 4219 . . . . . . . . 9  |-  { (
TopOpen `  r ) }  e.  _V
4913, 48xpex 4779 . . . . . . . 8  |-  ( d  X.  { ( TopOpen `  r ) } )  e.  _V
50 ptex 12966 . . . . . . . 8  |-  ( ( d  X.  { (
TopOpen `  r ) } )  e.  _V  ->  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )  e.  _V )
5149, 50ax-mp 5 . . . . . . 7  |-  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) )  e. 
_V
5243, 51opex 4263 . . . . . 6  |-  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )
>.  e.  _V
53 tpexg 4480 . . . . . 6  |-  ( (
<. (Scalar `  ndx ) ,  r >.  e.  _V  /\ 
<. ( .s `  ndx ) ,  ( x  e.  ( Base `  r
) ,  f  e.  b  |->  ( ( d  X.  { x }
)  oF ( .r `  r ) f ) ) >.  e.  _V  /\  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )
>.  e.  _V )  ->  { <. (Scalar `  ndx ) ,  r >. , 
<. ( .s `  ndx ) ,  ( x  e.  ( Base `  r
) ,  f  e.  b  |->  ( ( d  X.  { x }
)  oF ( .r `  r ) f ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. }  e.  _V )
5436, 41, 52, 53mp3an 1348 . . . . 5  |-  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. }  e.  _V
5532, 54unex 4477 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  e.  _V
5615, 55csbexa 4163 . . 3  |-  [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  e.  _V
577, 56csbexa 4163 . 2  |-  [_ {
h  e.  ( NN0 
^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  e.  _V
581, 57fnmpoi 6270 1  |- mPwSer  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   T. wtru 1365    e. wcel 2167   {crab 2479   _Vcvv 2763   [_csb 3084    u. cun 3155   {csn 3623   {ctp 3625   <.cop 3626   class class class wbr 4034    |-> cmpt 4095    X. cxp 4662   `'ccnv 4663    |` cres 4666   "cima 4667    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    e. cmpo 5927    oFcof 6137    oRcofr 6138    ^m cmap 6716   Fincfn 6808    <_ cle 8079    - cmin 8214   NNcn 9007   NN0cn0 9266   ndxcnx 12700  Slot cslot 12702   Basecbs 12703   +g cplusg 12780   .rcmulr 12781  Scalarcsca 12783   .scvsca 12784  TopSetcts 12786   TopOpenctopn 12942   Xt_cpt 12957    gsumg cgsu 12959   mPwSer cmps 14293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-i2m1 8001
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-tset 12799  df-rest 12943  df-topn 12944  df-topgen 12962  df-pt 12963  df-psr 14294
This theorem is referenced by:  psrelbas  14304  psrplusgg  14306  psradd  14307  psraddcl  14308
  Copyright terms: Public domain W3C validator