ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpsr Unicode version

Theorem fnpsr 14625
Description: The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
Assertion
Ref Expression
fnpsr  |- mPwSer  Fn  ( _V  X.  _V )

Proof of Theorem fnpsr
Dummy variables  b  d  f  g  h  i  k  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 14621 . 2  |- mPwSer  =  ( i  e.  _V , 
r  e.  _V  |->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
2 fnmap 6800 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
3 nn0ex 9371 . . . . 5  |-  NN0  e.  _V
4 vex 2802 . . . . 5  |-  i  e. 
_V
5 fnovex 6033 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  NN0  e.  _V  /\  i  e. 
_V )  ->  ( NN0  ^m  i )  e. 
_V )
62, 3, 4, 5mp3an 1371 . . . 4  |-  ( NN0 
^m  i )  e. 
_V
76rabex 4227 . . 3  |-  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  e.  _V
8 basfn 13086 . . . . . 6  |-  Base  Fn  _V
9 vex 2802 . . . . . 6  |-  r  e. 
_V
10 funfvex 5643 . . . . . . 7  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
1110funfni 5422 . . . . . 6  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
128, 9, 11mp2an 426 . . . . 5  |-  ( Base `  r )  e.  _V
13 vex 2802 . . . . 5  |-  d  e. 
_V
14 fnovex 6033 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( Base `  r )  e. 
_V  /\  d  e.  _V )  ->  ( (
Base `  r )  ^m  d )  e.  _V )
152, 12, 13, 14mp3an 1371 . . . 4  |-  ( (
Base `  r )  ^m  d )  e.  _V
16 basendxnn 13083 . . . . . . 7  |-  ( Base `  ndx )  e.  NN
17 vex 2802 . . . . . . 7  |-  b  e. 
_V
18 opexg 4313 . . . . . . 7  |-  ( ( ( Base `  ndx )  e.  NN  /\  b  e.  _V )  ->  <. ( Base `  ndx ) ,  b >.  e.  _V )
1916, 17, 18mp2an 426 . . . . . 6  |-  <. ( Base `  ndx ) ,  b >.  e.  _V
20 plusgndxnn 13139 . . . . . . 7  |-  ( +g  ` 
ndx )  e.  NN
2117a1i 9 . . . . . . . . 9  |-  ( T. 
->  b  e.  _V )
2221, 21ofmresex 6280 . . . . . . . 8  |-  ( T. 
->  (  oF
( +g  `  r )  |`  ( b  X.  b
) )  e.  _V )
2322mptru 1404 . . . . . . 7  |-  (  oF ( +g  `  r
)  |`  ( b  X.  b ) )  e. 
_V
24 opexg 4313 . . . . . . 7  |-  ( ( ( +g  `  ndx )  e.  NN  /\  (  oF ( +g  `  r )  |`  (
b  X.  b ) )  e.  _V )  -> 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >.  e.  _V )
2520, 23, 24mp2an 426 . . . . . 6  |-  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >.  e.  _V
26 mulrslid 13160 . . . . . . . . 9  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2726simpri 113 . . . . . . . 8  |-  ( .r
`  ndx )  e.  NN
2827elexi 2812 . . . . . . 7  |-  ( .r
`  ndx )  e.  _V
2917, 17mpoex 6358 . . . . . . 7  |-  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )  e.  _V
3028, 29opex 4314 . . . . . 6  |-  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b 
|->  ( k  e.  d 
|->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >.  e.  _V
31 tpexg 4534 . . . . . 6  |-  ( (
<. ( Base `  ndx ) ,  b >.  e. 
_V  /\  <. ( +g  ` 
ndx ) ,  (  oF ( +g  `  r )  |`  (
b  X.  b ) ) >.  e.  _V  /\ 
<. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >.  e.  _V )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  e.  _V )
3219, 25, 30, 31mp3an 1371 . . . . 5  |-  { <. (
Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  e.  _V
33 scaslid 13181 . . . . . . . . 9  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
3433simpri 113 . . . . . . . 8  |-  (Scalar `  ndx )  e.  NN
3534elexi 2812 . . . . . . 7  |-  (Scalar `  ndx )  e.  _V
3635, 9opex 4314 . . . . . 6  |-  <. (Scalar ` 
ndx ) ,  r
>.  e.  _V
37 vscaslid 13191 . . . . . . . . 9  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
3837simpri 113 . . . . . . . 8  |-  ( .s
`  ndx )  e.  NN
3938elexi 2812 . . . . . . 7  |-  ( .s
`  ndx )  e.  _V
4012, 17mpoex 6358 . . . . . . 7  |-  ( x  e.  ( Base `  r
) ,  f  e.  b  |->  ( ( d  X.  { x }
)  oF ( .r `  r ) f ) )  e. 
_V
4139, 40opex 4314 . . . . . 6  |-  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  r ) ,  f  e.  b  |->  ( ( d  X. 
{ x } )  oF ( .r
`  r ) f ) ) >.  e.  _V
42 tsetndxnn 13217 . . . . . . . 8  |-  (TopSet `  ndx )  e.  NN
4342elexi 2812 . . . . . . 7  |-  (TopSet `  ndx )  e.  _V
44 topnfn 13272 . . . . . . . . . . 11  |-  TopOpen  Fn  _V
45 funfvex 5643 . . . . . . . . . . . 12  |-  ( ( Fun  TopOpen  /\  r  e.  dom 
TopOpen )  ->  ( TopOpen `  r )  e.  _V )
4645funfni 5422 . . . . . . . . . . 11  |-  ( (
TopOpen  Fn  _V  /\  r  e.  _V )  ->  ( TopOpen
`  r )  e. 
_V )
4744, 9, 46mp2an 426 . . . . . . . . . 10  |-  ( TopOpen `  r )  e.  _V
4847snex 4268 . . . . . . . . 9  |-  { (
TopOpen `  r ) }  e.  _V
4913, 48xpex 4833 . . . . . . . 8  |-  ( d  X.  { ( TopOpen `  r ) } )  e.  _V
50 ptex 13292 . . . . . . . 8  |-  ( ( d  X.  { (
TopOpen `  r ) } )  e.  _V  ->  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )  e.  _V )
5149, 50ax-mp 5 . . . . . . 7  |-  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) )  e. 
_V
5243, 51opex 4314 . . . . . 6  |-  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )
>.  e.  _V
53 tpexg 4534 . . . . . 6  |-  ( (
<. (Scalar `  ndx ) ,  r >.  e.  _V  /\ 
<. ( .s `  ndx ) ,  ( x  e.  ( Base `  r
) ,  f  e.  b  |->  ( ( d  X.  { x }
)  oF ( .r `  r ) f ) ) >.  e.  _V  /\  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )
>.  e.  _V )  ->  { <. (Scalar `  ndx ) ,  r >. , 
<. ( .s `  ndx ) ,  ( x  e.  ( Base `  r
) ,  f  e.  b  |->  ( ( d  X.  { x }
)  oF ( .r `  r ) f ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. }  e.  _V )
5436, 41, 52, 53mp3an 1371 . . . . 5  |-  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. }  e.  _V
5532, 54unex 4531 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  e.  _V
5615, 55csbexa 4212 . . 3  |-  [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  e.  _V
577, 56csbexa 4212 . 2  |-  [_ {
h  e.  ( NN0 
^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  e.  _V
581, 57fnmpoi 6347 1  |- mPwSer  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    = wceq 1395   T. wtru 1396    e. wcel 2200   {crab 2512   _Vcvv 2799   [_csb 3124    u. cun 3195   {csn 3666   {ctp 3668   <.cop 3669   class class class wbr 4082    |-> cmpt 4144    X. cxp 4716   `'ccnv 4717    |` cres 4720   "cima 4721    Fn wfn 5312   ` cfv 5317  (class class class)co 6000    e. cmpo 6002    oFcof 6214    oRcofr 6215    ^m cmap 6793   Fincfn 6885    <_ cle 8178    - cmin 8313   NNcn 9106   NN0cn0 9365   ndxcnx 13024  Slot cslot 13026   Basecbs 13027   +g cplusg 13105   .rcmulr 13106  Scalarcsca 13108   .scvsca 13109  TopSetcts 13111   TopOpenctopn 13268   Xt_cpt 13283    gsumg cgsu 13285   mPwSer cmps 14619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-i2m1 8100
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-map 6795  df-ixp 6844  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-tset 13124  df-rest 13269  df-topn 13270  df-topgen 13288  df-pt 13289  df-psr 14621
This theorem is referenced by:  psrelbas  14633  psrplusgg  14636  psradd  14637  psraddcl  14638  mplvalcoe  14648  mplbascoe  14649  fnmpl  14651  mplplusgg  14661
  Copyright terms: Public domain W3C validator