ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpsr Unicode version

Theorem fnpsr 14371
Description: The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
Assertion
Ref Expression
fnpsr  |- mPwSer  Fn  ( _V  X.  _V )

Proof of Theorem fnpsr
Dummy variables  b  d  f  g  h  i  k  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 14367 . 2  |- mPwSer  =  ( i  e.  _V , 
r  e.  _V  |->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
2 fnmap 6741 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
3 nn0ex 9300 . . . . 5  |-  NN0  e.  _V
4 vex 2774 . . . . 5  |-  i  e. 
_V
5 fnovex 5976 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  NN0  e.  _V  /\  i  e. 
_V )  ->  ( NN0  ^m  i )  e. 
_V )
62, 3, 4, 5mp3an 1349 . . . 4  |-  ( NN0 
^m  i )  e. 
_V
76rabex 4187 . . 3  |-  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  e.  _V
8 basfn 12832 . . . . . 6  |-  Base  Fn  _V
9 vex 2774 . . . . . 6  |-  r  e. 
_V
10 funfvex 5592 . . . . . . 7  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
1110funfni 5375 . . . . . 6  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
128, 9, 11mp2an 426 . . . . 5  |-  ( Base `  r )  e.  _V
13 vex 2774 . . . . 5  |-  d  e. 
_V
14 fnovex 5976 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( Base `  r )  e. 
_V  /\  d  e.  _V )  ->  ( (
Base `  r )  ^m  d )  e.  _V )
152, 12, 13, 14mp3an 1349 . . . 4  |-  ( (
Base `  r )  ^m  d )  e.  _V
16 basendxnn 12830 . . . . . . 7  |-  ( Base `  ndx )  e.  NN
17 vex 2774 . . . . . . 7  |-  b  e. 
_V
18 opexg 4271 . . . . . . 7  |-  ( ( ( Base `  ndx )  e.  NN  /\  b  e.  _V )  ->  <. ( Base `  ndx ) ,  b >.  e.  _V )
1916, 17, 18mp2an 426 . . . . . 6  |-  <. ( Base `  ndx ) ,  b >.  e.  _V
20 plusgndxnn 12885 . . . . . . 7  |-  ( +g  ` 
ndx )  e.  NN
2117a1i 9 . . . . . . . . 9  |-  ( T. 
->  b  e.  _V )
2221, 21ofmresex 6221 . . . . . . . 8  |-  ( T. 
->  (  oF
( +g  `  r )  |`  ( b  X.  b
) )  e.  _V )
2322mptru 1381 . . . . . . 7  |-  (  oF ( +g  `  r
)  |`  ( b  X.  b ) )  e. 
_V
24 opexg 4271 . . . . . . 7  |-  ( ( ( +g  `  ndx )  e.  NN  /\  (  oF ( +g  `  r )  |`  (
b  X.  b ) )  e.  _V )  -> 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >.  e.  _V )
2520, 23, 24mp2an 426 . . . . . 6  |-  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >.  e.  _V
26 mulrslid 12906 . . . . . . . . 9  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2726simpri 113 . . . . . . . 8  |-  ( .r
`  ndx )  e.  NN
2827elexi 2783 . . . . . . 7  |-  ( .r
`  ndx )  e.  _V
2917, 17mpoex 6299 . . . . . . 7  |-  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )  e.  _V
3028, 29opex 4272 . . . . . 6  |-  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b 
|->  ( k  e.  d 
|->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >.  e.  _V
31 tpexg 4490 . . . . . 6  |-  ( (
<. ( Base `  ndx ) ,  b >.  e. 
_V  /\  <. ( +g  ` 
ndx ) ,  (  oF ( +g  `  r )  |`  (
b  X.  b ) ) >.  e.  _V  /\ 
<. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >.  e.  _V )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  e.  _V )
3219, 25, 30, 31mp3an 1349 . . . . 5  |-  { <. (
Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  e.  _V
33 scaslid 12927 . . . . . . . . 9  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
3433simpri 113 . . . . . . . 8  |-  (Scalar `  ndx )  e.  NN
3534elexi 2783 . . . . . . 7  |-  (Scalar `  ndx )  e.  _V
3635, 9opex 4272 . . . . . 6  |-  <. (Scalar ` 
ndx ) ,  r
>.  e.  _V
37 vscaslid 12937 . . . . . . . . 9  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
3837simpri 113 . . . . . . . 8  |-  ( .s
`  ndx )  e.  NN
3938elexi 2783 . . . . . . 7  |-  ( .s
`  ndx )  e.  _V
4012, 17mpoex 6299 . . . . . . 7  |-  ( x  e.  ( Base `  r
) ,  f  e.  b  |->  ( ( d  X.  { x }
)  oF ( .r `  r ) f ) )  e. 
_V
4139, 40opex 4272 . . . . . 6  |-  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  r ) ,  f  e.  b  |->  ( ( d  X. 
{ x } )  oF ( .r
`  r ) f ) ) >.  e.  _V
42 tsetndxnn 12963 . . . . . . . 8  |-  (TopSet `  ndx )  e.  NN
4342elexi 2783 . . . . . . 7  |-  (TopSet `  ndx )  e.  _V
44 topnfn 13018 . . . . . . . . . . 11  |-  TopOpen  Fn  _V
45 funfvex 5592 . . . . . . . . . . . 12  |-  ( ( Fun  TopOpen  /\  r  e.  dom 
TopOpen )  ->  ( TopOpen `  r )  e.  _V )
4645funfni 5375 . . . . . . . . . . 11  |-  ( (
TopOpen  Fn  _V  /\  r  e.  _V )  ->  ( TopOpen
`  r )  e. 
_V )
4744, 9, 46mp2an 426 . . . . . . . . . 10  |-  ( TopOpen `  r )  e.  _V
4847snex 4228 . . . . . . . . 9  |-  { (
TopOpen `  r ) }  e.  _V
4913, 48xpex 4789 . . . . . . . 8  |-  ( d  X.  { ( TopOpen `  r ) } )  e.  _V
50 ptex 13038 . . . . . . . 8  |-  ( ( d  X.  { (
TopOpen `  r ) } )  e.  _V  ->  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )  e.  _V )
5149, 50ax-mp 5 . . . . . . 7  |-  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) )  e. 
_V
5243, 51opex 4272 . . . . . 6  |-  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )
>.  e.  _V
53 tpexg 4490 . . . . . 6  |-  ( (
<. (Scalar `  ndx ) ,  r >.  e.  _V  /\ 
<. ( .s `  ndx ) ,  ( x  e.  ( Base `  r
) ,  f  e.  b  |->  ( ( d  X.  { x }
)  oF ( .r `  r ) f ) ) >.  e.  _V  /\  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )
>.  e.  _V )  ->  { <. (Scalar `  ndx ) ,  r >. , 
<. ( .s `  ndx ) ,  ( x  e.  ( Base `  r
) ,  f  e.  b  |->  ( ( d  X.  { x }
)  oF ( .r `  r ) f ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. }  e.  _V )
5436, 41, 52, 53mp3an 1349 . . . . 5  |-  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. }  e.  _V
5532, 54unex 4487 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  e.  _V
5615, 55csbexa 4172 . . 3  |-  [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  e.  _V
577, 56csbexa 4172 . 2  |-  [_ {
h  e.  ( NN0 
^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  e.  _V
581, 57fnmpoi 6288 1  |- mPwSer  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    = wceq 1372   T. wtru 1373    e. wcel 2175   {crab 2487   _Vcvv 2771   [_csb 3092    u. cun 3163   {csn 3632   {ctp 3634   <.cop 3635   class class class wbr 4043    |-> cmpt 4104    X. cxp 4672   `'ccnv 4673    |` cres 4676   "cima 4677    Fn wfn 5265   ` cfv 5270  (class class class)co 5943    e. cmpo 5945    oFcof 6155    oRcofr 6156    ^m cmap 6734   Fincfn 6826    <_ cle 8107    - cmin 8242   NNcn 9035   NN0cn0 9294   ndxcnx 12771  Slot cslot 12773   Basecbs 12774   +g cplusg 12851   .rcmulr 12852  Scalarcsca 12854   .scvsca 12855  TopSetcts 12857   TopOpenctopn 13014   Xt_cpt 13029    gsumg cgsu 13031   mPwSer cmps 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-i2m1 8029
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-of 6157  df-1st 6225  df-2nd 6226  df-map 6736  df-ixp 6785  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-n0 9295  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-tset 12870  df-rest 13015  df-topn 13016  df-topgen 13034  df-pt 13035  df-psr 14367
This theorem is referenced by:  psrelbas  14379  psrplusgg  14382  psradd  14383  psraddcl  14384  mplvalcoe  14394  mplbascoe  14395  fnmpl  14397  mplplusgg  14407
  Copyright terms: Public domain W3C validator