| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnpsr | Unicode version | ||
| Description: The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.) |
| Ref | Expression |
|---|---|
| fnpsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 14294 |
. 2
| |
| 2 | fnmap 6723 |
. . . . 5
| |
| 3 | nn0ex 9272 |
. . . . 5
| |
| 4 | vex 2766 |
. . . . 5
| |
| 5 | fnovex 5958 |
. . . . 5
| |
| 6 | 2, 3, 4, 5 | mp3an 1348 |
. . . 4
|
| 7 | 6 | rabex 4178 |
. . 3
|
| 8 | basfn 12761 |
. . . . . 6
| |
| 9 | vex 2766 |
. . . . . 6
| |
| 10 | funfvex 5578 |
. . . . . . 7
| |
| 11 | 10 | funfni 5361 |
. . . . . 6
|
| 12 | 8, 9, 11 | mp2an 426 |
. . . . 5
|
| 13 | vex 2766 |
. . . . 5
| |
| 14 | fnovex 5958 |
. . . . 5
| |
| 15 | 2, 12, 13, 14 | mp3an 1348 |
. . . 4
|
| 16 | basendxnn 12759 |
. . . . . . 7
| |
| 17 | vex 2766 |
. . . . . . 7
| |
| 18 | opexg 4262 |
. . . . . . 7
| |
| 19 | 16, 17, 18 | mp2an 426 |
. . . . . 6
|
| 20 | plusgndxnn 12814 |
. . . . . . 7
| |
| 21 | 17 | a1i 9 |
. . . . . . . . 9
|
| 22 | 21, 21 | ofmresex 6203 |
. . . . . . . 8
|
| 23 | 22 | mptru 1373 |
. . . . . . 7
|
| 24 | opexg 4262 |
. . . . . . 7
| |
| 25 | 20, 23, 24 | mp2an 426 |
. . . . . 6
|
| 26 | mulrslid 12834 |
. . . . . . . . 9
| |
| 27 | 26 | simpri 113 |
. . . . . . . 8
|
| 28 | 27 | elexi 2775 |
. . . . . . 7
|
| 29 | 17, 17 | mpoex 6281 |
. . . . . . 7
|
| 30 | 28, 29 | opex 4263 |
. . . . . 6
|
| 31 | tpexg 4480 |
. . . . . 6
| |
| 32 | 19, 25, 30, 31 | mp3an 1348 |
. . . . 5
|
| 33 | scaslid 12855 |
. . . . . . . . 9
| |
| 34 | 33 | simpri 113 |
. . . . . . . 8
|
| 35 | 34 | elexi 2775 |
. . . . . . 7
|
| 36 | 35, 9 | opex 4263 |
. . . . . 6
|
| 37 | vscaslid 12865 |
. . . . . . . . 9
| |
| 38 | 37 | simpri 113 |
. . . . . . . 8
|
| 39 | 38 | elexi 2775 |
. . . . . . 7
|
| 40 | 12, 17 | mpoex 6281 |
. . . . . . 7
|
| 41 | 39, 40 | opex 4263 |
. . . . . 6
|
| 42 | tsetndxnn 12891 |
. . . . . . . 8
| |
| 43 | 42 | elexi 2775 |
. . . . . . 7
|
| 44 | topnfn 12946 |
. . . . . . . . . . 11
| |
| 45 | funfvex 5578 |
. . . . . . . . . . . 12
| |
| 46 | 45 | funfni 5361 |
. . . . . . . . . . 11
|
| 47 | 44, 9, 46 | mp2an 426 |
. . . . . . . . . 10
|
| 48 | 47 | snex 4219 |
. . . . . . . . 9
|
| 49 | 13, 48 | xpex 4779 |
. . . . . . . 8
|
| 50 | ptex 12966 |
. . . . . . . 8
| |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . 7
|
| 52 | 43, 51 | opex 4263 |
. . . . . 6
|
| 53 | tpexg 4480 |
. . . . . 6
| |
| 54 | 36, 41, 52, 53 | mp3an 1348 |
. . . . 5
|
| 55 | 32, 54 | unex 4477 |
. . . 4
|
| 56 | 15, 55 | csbexa 4163 |
. . 3
|
| 57 | 7, 56 | csbexa 4163 |
. 2
|
| 58 | 1, 57 | fnmpoi 6270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-i2m1 8001 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-map 6718 df-ixp 6767 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-tset 12799 df-rest 12943 df-topn 12944 df-topgen 12962 df-pt 12963 df-psr 14294 |
| This theorem is referenced by: psrelbas 14304 psrplusgg 14306 psradd 14307 psraddcl 14308 |
| Copyright terms: Public domain | W3C validator |