| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnpsr | Unicode version | ||
| Description: The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.) |
| Ref | Expression |
|---|---|
| fnpsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 14367 |
. 2
| |
| 2 | fnmap 6741 |
. . . . 5
| |
| 3 | nn0ex 9300 |
. . . . 5
| |
| 4 | vex 2774 |
. . . . 5
| |
| 5 | fnovex 5976 |
. . . . 5
| |
| 6 | 2, 3, 4, 5 | mp3an 1349 |
. . . 4
|
| 7 | 6 | rabex 4187 |
. . 3
|
| 8 | basfn 12832 |
. . . . . 6
| |
| 9 | vex 2774 |
. . . . . 6
| |
| 10 | funfvex 5592 |
. . . . . . 7
| |
| 11 | 10 | funfni 5375 |
. . . . . 6
|
| 12 | 8, 9, 11 | mp2an 426 |
. . . . 5
|
| 13 | vex 2774 |
. . . . 5
| |
| 14 | fnovex 5976 |
. . . . 5
| |
| 15 | 2, 12, 13, 14 | mp3an 1349 |
. . . 4
|
| 16 | basendxnn 12830 |
. . . . . . 7
| |
| 17 | vex 2774 |
. . . . . . 7
| |
| 18 | opexg 4271 |
. . . . . . 7
| |
| 19 | 16, 17, 18 | mp2an 426 |
. . . . . 6
|
| 20 | plusgndxnn 12885 |
. . . . . . 7
| |
| 21 | 17 | a1i 9 |
. . . . . . . . 9
|
| 22 | 21, 21 | ofmresex 6221 |
. . . . . . . 8
|
| 23 | 22 | mptru 1381 |
. . . . . . 7
|
| 24 | opexg 4271 |
. . . . . . 7
| |
| 25 | 20, 23, 24 | mp2an 426 |
. . . . . 6
|
| 26 | mulrslid 12906 |
. . . . . . . . 9
| |
| 27 | 26 | simpri 113 |
. . . . . . . 8
|
| 28 | 27 | elexi 2783 |
. . . . . . 7
|
| 29 | 17, 17 | mpoex 6299 |
. . . . . . 7
|
| 30 | 28, 29 | opex 4272 |
. . . . . 6
|
| 31 | tpexg 4490 |
. . . . . 6
| |
| 32 | 19, 25, 30, 31 | mp3an 1349 |
. . . . 5
|
| 33 | scaslid 12927 |
. . . . . . . . 9
| |
| 34 | 33 | simpri 113 |
. . . . . . . 8
|
| 35 | 34 | elexi 2783 |
. . . . . . 7
|
| 36 | 35, 9 | opex 4272 |
. . . . . 6
|
| 37 | vscaslid 12937 |
. . . . . . . . 9
| |
| 38 | 37 | simpri 113 |
. . . . . . . 8
|
| 39 | 38 | elexi 2783 |
. . . . . . 7
|
| 40 | 12, 17 | mpoex 6299 |
. . . . . . 7
|
| 41 | 39, 40 | opex 4272 |
. . . . . 6
|
| 42 | tsetndxnn 12963 |
. . . . . . . 8
| |
| 43 | 42 | elexi 2783 |
. . . . . . 7
|
| 44 | topnfn 13018 |
. . . . . . . . . . 11
| |
| 45 | funfvex 5592 |
. . . . . . . . . . . 12
| |
| 46 | 45 | funfni 5375 |
. . . . . . . . . . 11
|
| 47 | 44, 9, 46 | mp2an 426 |
. . . . . . . . . 10
|
| 48 | 47 | snex 4228 |
. . . . . . . . 9
|
| 49 | 13, 48 | xpex 4789 |
. . . . . . . 8
|
| 50 | ptex 13038 |
. . . . . . . 8
| |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . 7
|
| 52 | 43, 51 | opex 4272 |
. . . . . 6
|
| 53 | tpexg 4490 |
. . . . . 6
| |
| 54 | 36, 41, 52, 53 | mp3an 1349 |
. . . . 5
|
| 55 | 32, 54 | unex 4487 |
. . . 4
|
| 56 | 15, 55 | csbexa 4172 |
. . 3
|
| 57 | 7, 56 | csbexa 4172 |
. 2
|
| 58 | 1, 57 | fnmpoi 6288 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-i2m1 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 df-1st 6225 df-2nd 6226 df-map 6736 df-ixp 6785 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-mulr 12865 df-sca 12867 df-vsca 12868 df-tset 12870 df-rest 13015 df-topn 13016 df-topgen 13034 df-pt 13035 df-psr 14367 |
| This theorem is referenced by: psrelbas 14379 psrplusgg 14382 psradd 14383 psraddcl 14384 mplvalcoe 14394 mplbascoe 14395 fnmpl 14397 mplplusgg 14407 |
| Copyright terms: Public domain | W3C validator |