| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnpsr | Unicode version | ||
| Description: The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.) |
| Ref | Expression |
|---|---|
| fnpsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 14621 |
. 2
| |
| 2 | fnmap 6800 |
. . . . 5
| |
| 3 | nn0ex 9371 |
. . . . 5
| |
| 4 | vex 2802 |
. . . . 5
| |
| 5 | fnovex 6033 |
. . . . 5
| |
| 6 | 2, 3, 4, 5 | mp3an 1371 |
. . . 4
|
| 7 | 6 | rabex 4227 |
. . 3
|
| 8 | basfn 13086 |
. . . . . 6
| |
| 9 | vex 2802 |
. . . . . 6
| |
| 10 | funfvex 5643 |
. . . . . . 7
| |
| 11 | 10 | funfni 5422 |
. . . . . 6
|
| 12 | 8, 9, 11 | mp2an 426 |
. . . . 5
|
| 13 | vex 2802 |
. . . . 5
| |
| 14 | fnovex 6033 |
. . . . 5
| |
| 15 | 2, 12, 13, 14 | mp3an 1371 |
. . . 4
|
| 16 | basendxnn 13083 |
. . . . . . 7
| |
| 17 | vex 2802 |
. . . . . . 7
| |
| 18 | opexg 4313 |
. . . . . . 7
| |
| 19 | 16, 17, 18 | mp2an 426 |
. . . . . 6
|
| 20 | plusgndxnn 13139 |
. . . . . . 7
| |
| 21 | 17 | a1i 9 |
. . . . . . . . 9
|
| 22 | 21, 21 | ofmresex 6280 |
. . . . . . . 8
|
| 23 | 22 | mptru 1404 |
. . . . . . 7
|
| 24 | opexg 4313 |
. . . . . . 7
| |
| 25 | 20, 23, 24 | mp2an 426 |
. . . . . 6
|
| 26 | mulrslid 13160 |
. . . . . . . . 9
| |
| 27 | 26 | simpri 113 |
. . . . . . . 8
|
| 28 | 27 | elexi 2812 |
. . . . . . 7
|
| 29 | 17, 17 | mpoex 6358 |
. . . . . . 7
|
| 30 | 28, 29 | opex 4314 |
. . . . . 6
|
| 31 | tpexg 4534 |
. . . . . 6
| |
| 32 | 19, 25, 30, 31 | mp3an 1371 |
. . . . 5
|
| 33 | scaslid 13181 |
. . . . . . . . 9
| |
| 34 | 33 | simpri 113 |
. . . . . . . 8
|
| 35 | 34 | elexi 2812 |
. . . . . . 7
|
| 36 | 35, 9 | opex 4314 |
. . . . . 6
|
| 37 | vscaslid 13191 |
. . . . . . . . 9
| |
| 38 | 37 | simpri 113 |
. . . . . . . 8
|
| 39 | 38 | elexi 2812 |
. . . . . . 7
|
| 40 | 12, 17 | mpoex 6358 |
. . . . . . 7
|
| 41 | 39, 40 | opex 4314 |
. . . . . 6
|
| 42 | tsetndxnn 13217 |
. . . . . . . 8
| |
| 43 | 42 | elexi 2812 |
. . . . . . 7
|
| 44 | topnfn 13272 |
. . . . . . . . . . 11
| |
| 45 | funfvex 5643 |
. . . . . . . . . . . 12
| |
| 46 | 45 | funfni 5422 |
. . . . . . . . . . 11
|
| 47 | 44, 9, 46 | mp2an 426 |
. . . . . . . . . 10
|
| 48 | 47 | snex 4268 |
. . . . . . . . 9
|
| 49 | 13, 48 | xpex 4833 |
. . . . . . . 8
|
| 50 | ptex 13292 |
. . . . . . . 8
| |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . 7
|
| 52 | 43, 51 | opex 4314 |
. . . . . 6
|
| 53 | tpexg 4534 |
. . . . . 6
| |
| 54 | 36, 41, 52, 53 | mp3an 1371 |
. . . . 5
|
| 55 | 32, 54 | unex 4531 |
. . . 4
|
| 56 | 15, 55 | csbexa 4212 |
. . 3
|
| 57 | 7, 56 | csbexa 4212 |
. 2
|
| 58 | 1, 57 | fnmpoi 6347 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-i2m1 8100 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-of 6216 df-1st 6284 df-2nd 6285 df-map 6795 df-ixp 6844 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-tset 13124 df-rest 13269 df-topn 13270 df-topgen 13288 df-pt 13289 df-psr 14621 |
| This theorem is referenced by: psrelbas 14633 psrplusgg 14636 psradd 14637 psraddcl 14638 mplvalcoe 14648 mplbascoe 14649 fnmpl 14651 mplplusgg 14661 |
| Copyright terms: Public domain | W3C validator |