| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrplusgg | Unicode version | ||
| Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| psrplusg.s |
|
| psrplusg.b |
|
| psrplusg.a |
|
| psrplusg.p |
|
| Ref | Expression |
|---|---|
| psrplusgg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrplusg.s |
. . . 4
| |
| 2 | eqid 2204 |
. . . 4
| |
| 3 | psrplusg.a |
. . . 4
| |
| 4 | eqid 2204 |
. . . 4
| |
| 5 | eqid 2204 |
. . . 4
| |
| 6 | eqid 2204 |
. . . 4
| |
| 7 | psrplusg.b |
. . . . 5
| |
| 8 | simpl 109 |
. . . . 5
| |
| 9 | simpr 110 |
. . . . 5
| |
| 10 | 1, 2, 6, 7, 8, 9 | psrbasg 14407 |
. . . 4
|
| 11 | eqid 2204 |
. . . 4
| |
| 12 | eqid 2204 |
. . . 4
| |
| 13 | eqid 2204 |
. . . 4
| |
| 14 | eqidd 2205 |
. . . 4
| |
| 15 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 8, 9 | psrval 14399 |
. . 3
|
| 16 | 15 | fveq2d 5579 |
. 2
|
| 17 | psrplusg.p |
. . 3
| |
| 18 | 17 | a1i 9 |
. 2
|
| 19 | plusgslid 12915 |
. . 3
| |
| 20 | basfn 12861 |
. . . . . 6
| |
| 21 | fnpsr 14400 |
. . . . . . . 8
| |
| 22 | 8 | elexd 2784 |
. . . . . . . 8
|
| 23 | 9 | elexd 2784 |
. . . . . . . 8
|
| 24 | fnovex 5976 |
. . . . . . . 8
| |
| 25 | 21, 22, 23, 24 | mp3an2i 1354 |
. . . . . . 7
|
| 26 | 1, 25 | eqeltrid 2291 |
. . . . . 6
|
| 27 | funfvex 5592 |
. . . . . . 7
| |
| 28 | 27 | funfni 5375 |
. . . . . 6
|
| 29 | 20, 26, 28 | sylancr 414 |
. . . . 5
|
| 30 | 7, 29 | eqeltrid 2291 |
. . . 4
|
| 31 | 30, 30 | ofmresex 6221 |
. . . 4
|
| 32 | mpoexga 6297 |
. . . . 5
| |
| 33 | 30, 30, 32 | syl2anc 411 |
. . . 4
|
| 34 | funfvex 5592 |
. . . . . . 7
| |
| 35 | 34 | funfni 5375 |
. . . . . 6
|
| 36 | 20, 23, 35 | sylancr 414 |
. . . . 5
|
| 37 | mpoexga 6297 |
. . . . 5
| |
| 38 | 36, 30, 37 | syl2anc 411 |
. . . 4
|
| 39 | fnmap 6741 |
. . . . . . . 8
| |
| 40 | nn0ex 9300 |
. . . . . . . . 9
| |
| 41 | 40 | a1i 9 |
. . . . . . . 8
|
| 42 | fnovex 5976 |
. . . . . . . 8
| |
| 43 | 39, 41, 22, 42 | mp3an2i 1354 |
. . . . . . 7
|
| 44 | rabexg 4186 |
. . . . . . 7
| |
| 45 | 43, 44 | syl 14 |
. . . . . 6
|
| 46 | topnfn 13047 |
. . . . . . . 8
| |
| 47 | funfvex 5592 |
. . . . . . . . 9
| |
| 48 | 47 | funfni 5375 |
. . . . . . . 8
|
| 49 | 46, 23, 48 | sylancr 414 |
. . . . . . 7
|
| 50 | snexg 4227 |
. . . . . . 7
| |
| 51 | 49, 50 | syl 14 |
. . . . . 6
|
| 52 | xpexg 4788 |
. . . . . 6
| |
| 53 | 45, 51, 52 | syl2anc 411 |
. . . . 5
|
| 54 | ptex 13067 |
. . . . 5
| |
| 55 | 53, 54 | syl 14 |
. . . 4
|
| 56 | 30, 31, 33, 9, 38, 55 | psrvalstrd 14401 |
. . 3
|
| 57 | plusgndxnn 12914 |
. . . . 5
| |
| 58 | opexg 4271 |
. . . . 5
| |
| 59 | 57, 31, 58 | sylancr 414 |
. . . 4
|
| 60 | snsstp2 3783 |
. . . . . 6
| |
| 61 | ssun1 3335 |
. . . . . 6
| |
| 62 | 60, 61 | sstri 3201 |
. . . . 5
|
| 63 | snssg 3766 |
. . . . 5
| |
| 64 | 62, 63 | mpbiri 168 |
. . . 4
|
| 65 | 59, 64 | syl 14 |
. . 3
|
| 66 | 19, 56, 31, 65 | opelstrsl 12917 |
. 2
|
| 67 | 16, 18, 66 | 3eqtr4d 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 df-1st 6225 df-2nd 6226 df-map 6736 df-ixp 6785 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-struct 12805 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-mulr 12894 df-sca 12896 df-vsca 12897 df-tset 12899 df-rest 13044 df-topn 13045 df-topgen 13063 df-pt 13064 df-psr 14396 |
| This theorem is referenced by: psradd 14412 |
| Copyright terms: Public domain | W3C validator |