| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > psrplusgg | Unicode version | ||
| Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| psrplusg.s | 
 | 
| psrplusg.b | 
 | 
| psrplusg.a | 
 | 
| psrplusg.p | 
 | 
| Ref | Expression | 
|---|---|
| psrplusgg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | psrplusg.s | 
. . . 4
 | |
| 2 | eqid 2196 | 
. . . 4
 | |
| 3 | psrplusg.a | 
. . . 4
 | |
| 4 | eqid 2196 | 
. . . 4
 | |
| 5 | eqid 2196 | 
. . . 4
 | |
| 6 | eqid 2196 | 
. . . 4
 | |
| 7 | psrplusg.b | 
. . . . 5
 | |
| 8 | simpl 109 | 
. . . . 5
 | |
| 9 | simpr 110 | 
. . . . 5
 | |
| 10 | 1, 2, 6, 7, 8, 9 | psrbasg 14227 | 
. . . 4
 | 
| 11 | eqid 2196 | 
. . . 4
 | |
| 12 | eqid 2196 | 
. . . 4
 | |
| 13 | eqid 2196 | 
. . . 4
 | |
| 14 | eqidd 2197 | 
. . . 4
 | |
| 15 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 8, 9 | psrval 14220 | 
. . 3
 | 
| 16 | 15 | fveq2d 5562 | 
. 2
 | 
| 17 | psrplusg.p | 
. . 3
 | |
| 18 | 17 | a1i 9 | 
. 2
 | 
| 19 | plusgslid 12790 | 
. . 3
 | |
| 20 | basfn 12736 | 
. . . . . 6
 | |
| 21 | fnpsr 14221 | 
. . . . . . . 8
 | |
| 22 | 8 | elexd 2776 | 
. . . . . . . 8
 | 
| 23 | 9 | elexd 2776 | 
. . . . . . . 8
 | 
| 24 | fnovex 5955 | 
. . . . . . . 8
 | |
| 25 | 21, 22, 23, 24 | mp3an2i 1353 | 
. . . . . . 7
 | 
| 26 | 1, 25 | eqeltrid 2283 | 
. . . . . 6
 | 
| 27 | funfvex 5575 | 
. . . . . . 7
 | |
| 28 | 27 | funfni 5358 | 
. . . . . 6
 | 
| 29 | 20, 26, 28 | sylancr 414 | 
. . . . 5
 | 
| 30 | 7, 29 | eqeltrid 2283 | 
. . . 4
 | 
| 31 | 30, 30 | ofmresex 6194 | 
. . . 4
 | 
| 32 | mpoexga 6270 | 
. . . . 5
 | |
| 33 | 30, 30, 32 | syl2anc 411 | 
. . . 4
 | 
| 34 | funfvex 5575 | 
. . . . . . 7
 | |
| 35 | 34 | funfni 5358 | 
. . . . . 6
 | 
| 36 | 20, 23, 35 | sylancr 414 | 
. . . . 5
 | 
| 37 | mpoexga 6270 | 
. . . . 5
 | |
| 38 | 36, 30, 37 | syl2anc 411 | 
. . . 4
 | 
| 39 | fnmap 6714 | 
. . . . . . . 8
 | |
| 40 | nn0ex 9255 | 
. . . . . . . . 9
 | |
| 41 | 40 | a1i 9 | 
. . . . . . . 8
 | 
| 42 | fnovex 5955 | 
. . . . . . . 8
 | |
| 43 | 39, 41, 22, 42 | mp3an2i 1353 | 
. . . . . . 7
 | 
| 44 | rabexg 4176 | 
. . . . . . 7
 | |
| 45 | 43, 44 | syl 14 | 
. . . . . 6
 | 
| 46 | topnfn 12915 | 
. . . . . . . 8
 | |
| 47 | funfvex 5575 | 
. . . . . . . . 9
 | |
| 48 | 47 | funfni 5358 | 
. . . . . . . 8
 | 
| 49 | 46, 23, 48 | sylancr 414 | 
. . . . . . 7
 | 
| 50 | snexg 4217 | 
. . . . . . 7
 | |
| 51 | 49, 50 | syl 14 | 
. . . . . 6
 | 
| 52 | xpexg 4777 | 
. . . . . 6
 | |
| 53 | 45, 51, 52 | syl2anc 411 | 
. . . . 5
 | 
| 54 | ptex 12935 | 
. . . . 5
 | |
| 55 | 53, 54 | syl 14 | 
. . . 4
 | 
| 56 | 30, 31, 33, 9, 38, 55 | psrvalstrd 14222 | 
. . 3
 | 
| 57 | plusgndxnn 12789 | 
. . . . 5
 | |
| 58 | opexg 4261 | 
. . . . 5
 | |
| 59 | 57, 31, 58 | sylancr 414 | 
. . . 4
 | 
| 60 | snsstp2 3773 | 
. . . . . 6
 | |
| 61 | ssun1 3326 | 
. . . . . 6
 | |
| 62 | 60, 61 | sstri 3192 | 
. . . . 5
 | 
| 63 | snssg 3756 | 
. . . . 5
 | |
| 64 | 62, 63 | mpbiri 168 | 
. . . 4
 | 
| 65 | 59, 64 | syl 14 | 
. . 3
 | 
| 66 | 19, 56, 31, 65 | opelstrsl 12792 | 
. 2
 | 
| 67 | 16, 18, 66 | 3eqtr4d 2239 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-map 6709 df-ixp 6758 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-tset 12774 df-rest 12912 df-topn 12913 df-topgen 12931 df-pt 12932 df-psr 14218 | 
| This theorem is referenced by: psradd 14231 | 
| Copyright terms: Public domain | W3C validator |