| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrplusgg | Unicode version | ||
| Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| psrplusg.s |
|
| psrplusg.b |
|
| psrplusg.a |
|
| psrplusg.p |
|
| Ref | Expression |
|---|---|
| psrplusgg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrplusg.s |
. . . 4
| |
| 2 | eqid 2206 |
. . . 4
| |
| 3 | psrplusg.a |
. . . 4
| |
| 4 | eqid 2206 |
. . . 4
| |
| 5 | eqid 2206 |
. . . 4
| |
| 6 | eqid 2206 |
. . . 4
| |
| 7 | psrplusg.b |
. . . . 5
| |
| 8 | simpl 109 |
. . . . 5
| |
| 9 | simpr 110 |
. . . . 5
| |
| 10 | 1, 2, 6, 7, 8, 9 | psrbasg 14521 |
. . . 4
|
| 11 | eqid 2206 |
. . . 4
| |
| 12 | eqid 2206 |
. . . 4
| |
| 13 | eqid 2206 |
. . . 4
| |
| 14 | eqidd 2207 |
. . . 4
| |
| 15 | 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 8, 9 | psrval 14513 |
. . 3
|
| 16 | 15 | fveq2d 5598 |
. 2
|
| 17 | psrplusg.p |
. . 3
| |
| 18 | 17 | a1i 9 |
. 2
|
| 19 | plusgslid 13029 |
. . 3
| |
| 20 | basfn 12975 |
. . . . . 6
| |
| 21 | fnpsr 14514 |
. . . . . . . 8
| |
| 22 | 8 | elexd 2787 |
. . . . . . . 8
|
| 23 | 9 | elexd 2787 |
. . . . . . . 8
|
| 24 | fnovex 5995 |
. . . . . . . 8
| |
| 25 | 21, 22, 23, 24 | mp3an2i 1355 |
. . . . . . 7
|
| 26 | 1, 25 | eqeltrid 2293 |
. . . . . 6
|
| 27 | funfvex 5611 |
. . . . . . 7
| |
| 28 | 27 | funfni 5390 |
. . . . . 6
|
| 29 | 20, 26, 28 | sylancr 414 |
. . . . 5
|
| 30 | 7, 29 | eqeltrid 2293 |
. . . 4
|
| 31 | 30, 30 | ofmresex 6240 |
. . . 4
|
| 32 | mpoexga 6316 |
. . . . 5
| |
| 33 | 30, 30, 32 | syl2anc 411 |
. . . 4
|
| 34 | funfvex 5611 |
. . . . . . 7
| |
| 35 | 34 | funfni 5390 |
. . . . . 6
|
| 36 | 20, 23, 35 | sylancr 414 |
. . . . 5
|
| 37 | mpoexga 6316 |
. . . . 5
| |
| 38 | 36, 30, 37 | syl2anc 411 |
. . . 4
|
| 39 | fnmap 6760 |
. . . . . . . 8
| |
| 40 | nn0ex 9331 |
. . . . . . . . 9
| |
| 41 | 40 | a1i 9 |
. . . . . . . 8
|
| 42 | fnovex 5995 |
. . . . . . . 8
| |
| 43 | 39, 41, 22, 42 | mp3an2i 1355 |
. . . . . . 7
|
| 44 | rabexg 4198 |
. . . . . . 7
| |
| 45 | 43, 44 | syl 14 |
. . . . . 6
|
| 46 | topnfn 13161 |
. . . . . . . 8
| |
| 47 | funfvex 5611 |
. . . . . . . . 9
| |
| 48 | 47 | funfni 5390 |
. . . . . . . 8
|
| 49 | 46, 23, 48 | sylancr 414 |
. . . . . . 7
|
| 50 | snexg 4239 |
. . . . . . 7
| |
| 51 | 49, 50 | syl 14 |
. . . . . 6
|
| 52 | xpexg 4802 |
. . . . . 6
| |
| 53 | 45, 51, 52 | syl2anc 411 |
. . . . 5
|
| 54 | ptex 13181 |
. . . . 5
| |
| 55 | 53, 54 | syl 14 |
. . . 4
|
| 56 | 30, 31, 33, 9, 38, 55 | psrvalstrd 14515 |
. . 3
|
| 57 | plusgndxnn 13028 |
. . . . 5
| |
| 58 | opexg 4285 |
. . . . 5
| |
| 59 | 57, 31, 58 | sylancr 414 |
. . . 4
|
| 60 | snsstp2 3790 |
. . . . . 6
| |
| 61 | ssun1 3340 |
. . . . . 6
| |
| 62 | 60, 61 | sstri 3206 |
. . . . 5
|
| 63 | snssg 3773 |
. . . . 5
| |
| 64 | 62, 63 | mpbiri 168 |
. . . 4
|
| 65 | 59, 64 | syl 14 |
. . 3
|
| 66 | 19, 56, 31, 65 | opelstrsl 13031 |
. 2
|
| 67 | 16, 18, 66 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-of 6176 df-1st 6244 df-2nd 6245 df-map 6755 df-ixp 6804 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-z 9403 df-uz 9679 df-fz 10161 df-struct 12919 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-mulr 13008 df-sca 13010 df-vsca 13011 df-tset 13013 df-rest 13158 df-topn 13159 df-topgen 13177 df-pt 13178 df-psr 14510 |
| This theorem is referenced by: psradd 14526 |
| Copyright terms: Public domain | W3C validator |