| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > psrvalstrd | GIF version | ||
| Description: The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| psrvalstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑋) | 
| psrvalstrd.plusg | ⊢ (𝜑 → + ∈ 𝑌) | 
| psrvalstrd.ips | ⊢ (𝜑 → × ∈ 𝑍) | 
| psrvalstrd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) | 
| psrvalstrd.mulr | ⊢ (𝜑 → · ∈ 𝑃) | 
| psrvalstrd.j | ⊢ (𝜑 → 𝐽 ∈ 𝑄) | 
| Ref | Expression | 
|---|---|
| psrvalstrd | ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉}) Struct 〈1, 9〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | psrvalstrd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 2 | psrvalstrd.plusg | . . 3 ⊢ (𝜑 → + ∈ 𝑌) | |
| 3 | psrvalstrd.ips | . . 3 ⊢ (𝜑 → × ∈ 𝑍) | |
| 4 | eqid 2196 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
| 5 | 4 | rngstrg 12812 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ + ∈ 𝑌 ∧ × ∈ 𝑍) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) | 
| 6 | 1, 2, 3, 5 | syl3anc 1249 | . 2 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) | 
| 7 | psrvalstrd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 8 | psrvalstrd.mulr | . . 3 ⊢ (𝜑 → · ∈ 𝑃) | |
| 9 | psrvalstrd.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑄) | |
| 10 | 5nn 9155 | . . . 4 ⊢ 5 ∈ ℕ | |
| 11 | scandx 12828 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
| 12 | 5lt6 9170 | . . . 4 ⊢ 5 < 6 | |
| 13 | 6nn 9156 | . . . 4 ⊢ 6 ∈ ℕ | |
| 14 | vscandx 12834 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 15 | 6lt9 9190 | . . . 4 ⊢ 6 < 9 | |
| 16 | 9nn 9159 | . . . 4 ⊢ 9 ∈ ℕ | |
| 17 | tsetndx 12863 | . . . 4 ⊢ (TopSet‘ndx) = 9 | |
| 18 | 10, 11, 12, 13, 14, 15, 16, 17 | strle3g 12786 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ · ∈ 𝑃 ∧ 𝐽 ∈ 𝑄) → {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉} Struct 〈5, 9〉) | 
| 19 | 7, 8, 9, 18 | syl3anc 1249 | . 2 ⊢ (𝜑 → {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉} Struct 〈5, 9〉) | 
| 20 | 3lt5 9167 | . . 3 ⊢ 3 < 5 | |
| 21 | 20 | a1i 9 | . 2 ⊢ (𝜑 → 3 < 5) | 
| 22 | 6, 19, 21 | strleund 12781 | 1 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉}) Struct 〈1, 9〉) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ∪ cun 3155 {ctp 3624 〈cop 3625 class class class wbr 4033 ‘cfv 5258 1c1 7880 < clt 8061 3c3 9042 5c5 9044 6c6 9045 9c9 9048 Struct cstr 12674 ndxcnx 12675 Basecbs 12678 +gcplusg 12755 .rcmulr 12756 Scalarcsca 12758 ·𝑠 cvsca 12759 TopSetcts 12761 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-tset 12774 | 
| This theorem is referenced by: psrbasg 14227 psrplusgg 14230 | 
| Copyright terms: Public domain | W3C validator |