![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > psrvalstrd | GIF version |
Description: The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
psrvalstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
psrvalstrd.plusg | ⊢ (𝜑 → + ∈ 𝑌) |
psrvalstrd.ips | ⊢ (𝜑 → × ∈ 𝑍) |
psrvalstrd.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
psrvalstrd.mulr | ⊢ (𝜑 → · ∈ 𝑃) |
psrvalstrd.j | ⊢ (𝜑 → 𝐽 ∈ 𝑄) |
Ref | Expression |
---|---|
psrvalstrd | ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉}) Struct 〈1, 9〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrvalstrd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
2 | psrvalstrd.plusg | . . 3 ⊢ (𝜑 → + ∈ 𝑌) | |
3 | psrvalstrd.ips | . . 3 ⊢ (𝜑 → × ∈ 𝑍) | |
4 | eqid 2193 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
5 | 4 | rngstrg 12752 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ + ∈ 𝑌 ∧ × ∈ 𝑍) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
6 | 1, 2, 3, 5 | syl3anc 1249 | . 2 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
7 | psrvalstrd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
8 | psrvalstrd.mulr | . . 3 ⊢ (𝜑 → · ∈ 𝑃) | |
9 | psrvalstrd.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑄) | |
10 | 5nn 9146 | . . . 4 ⊢ 5 ∈ ℕ | |
11 | scandx 12768 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
12 | 5lt6 9161 | . . . 4 ⊢ 5 < 6 | |
13 | 6nn 9147 | . . . 4 ⊢ 6 ∈ ℕ | |
14 | vscandx 12774 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
15 | 6lt9 9181 | . . . 4 ⊢ 6 < 9 | |
16 | 9nn 9150 | . . . 4 ⊢ 9 ∈ ℕ | |
17 | tsetndx 12803 | . . . 4 ⊢ (TopSet‘ndx) = 9 | |
18 | 10, 11, 12, 13, 14, 15, 16, 17 | strle3g 12726 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ · ∈ 𝑃 ∧ 𝐽 ∈ 𝑄) → {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉} Struct 〈5, 9〉) |
19 | 7, 8, 9, 18 | syl3anc 1249 | . 2 ⊢ (𝜑 → {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉} Struct 〈5, 9〉) |
20 | 3lt5 9158 | . . 3 ⊢ 3 < 5 | |
21 | 20 | a1i 9 | . 2 ⊢ (𝜑 → 3 < 5) |
22 | 6, 19, 21 | strleund 12721 | 1 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉}) Struct 〈1, 9〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∪ cun 3151 {ctp 3620 〈cop 3621 class class class wbr 4029 ‘cfv 5254 1c1 7873 < clt 8054 3c3 9034 5c5 9036 6c6 9037 9c9 9040 Struct cstr 12614 ndxcnx 12615 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 Scalarcsca 12698 ·𝑠 cvsca 12699 TopSetcts 12701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-struct 12620 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mulr 12709 df-sca 12711 df-vsca 12712 df-tset 12714 |
This theorem is referenced by: psrbasg 14159 psrplusgg 14162 |
Copyright terms: Public domain | W3C validator |