ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpipr GIF version

Theorem recidpipr 7788
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
Assertion
Ref Expression
recidpipr (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
Distinct variable group:   𝑁,𝑙,𝑢

Proof of Theorem recidpipr
StepHypRef Expression
1 nnnq 7354 . . 3 (𝑁N → [⟨𝑁, 1o⟩] ~QQ)
2 recclnq 7324 . . . 4 ([⟨𝑁, 1o⟩] ~QQ → (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q)
31, 2syl 14 . . 3 (𝑁N → (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q)
4 mulnqpr 7509 . . 3 (([⟨𝑁, 1o⟩] ~QQ ∧ (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩))
51, 3, 4syl2anc 409 . 2 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩))
6 recidnq 7325 . . . . . . 7 ([⟨𝑁, 1o⟩] ~QQ → ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) = 1Q)
71, 6syl 14 . . . . . 6 (𝑁N → ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) = 1Q)
87breq2d 3988 . . . . 5 (𝑁N → (𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) ↔ 𝑙 <Q 1Q))
98abbidv 2282 . . . 4 (𝑁N → {𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))} = {𝑙𝑙 <Q 1Q})
107breq1d 3986 . . . . 5 (𝑁N → (([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢 ↔ 1Q <Q 𝑢))
1110abbidv 2282 . . . 4 (𝑁N → {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢})
129, 11opeq12d 3760 . . 3 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩)
13 df-i1p 7399 . . 3 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
1412, 13eqtr4di 2215 . 2 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = 1P)
155, 14eqtr3d 2199 1 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1342  wcel 2135  {cab 2150  cop 3573   class class class wbr 3976  cfv 5182  (class class class)co 5836  1oc1o 6368  [cec 6490  Ncnpi 7204   ~Q ceq 7211  Qcnq 7212  1Qc1q 7213   ·Q cmq 7215  *Qcrq 7216   <Q cltq 7217  1Pc1p 7224   ·P cmp 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-2o 6376  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-enq0 7356  df-nq0 7357  df-0nq0 7358  df-plq0 7359  df-mq0 7360  df-inp 7398  df-i1p 7399  df-imp 7401
This theorem is referenced by:  recidpirq  7790
  Copyright terms: Public domain W3C validator