![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recidpipr | GIF version |
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.) |
Ref | Expression |
---|---|
recidpipr | ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnq 7484 | . . 3 ⊢ (𝑁 ∈ N → [〈𝑁, 1o〉] ~Q ∈ Q) | |
2 | recclnq 7454 | . . . 4 ⊢ ([〈𝑁, 1o〉] ~Q ∈ Q → (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) |
4 | mulnqpr 7639 | . . 3 ⊢ (([〈𝑁, 1o〉] ~Q ∈ Q ∧ (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉)) | |
5 | 1, 3, 4 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉)) |
6 | recidnq 7455 | . . . . . . 7 ⊢ ([〈𝑁, 1o〉] ~Q ∈ Q → ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) = 1Q) | |
7 | 1, 6 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ N → ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) = 1Q) |
8 | 7 | breq2d 4042 | . . . . 5 ⊢ (𝑁 ∈ N → (𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) ↔ 𝑙 <Q 1Q)) |
9 | 8 | abbidv 2311 | . . . 4 ⊢ (𝑁 ∈ N → {𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))} = {𝑙 ∣ 𝑙 <Q 1Q}) |
10 | 7 | breq1d 4040 | . . . . 5 ⊢ (𝑁 ∈ N → (([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢 ↔ 1Q <Q 𝑢)) |
11 | 10 | abbidv 2311 | . . . 4 ⊢ (𝑁 ∈ N → {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢}) |
12 | 9, 11 | opeq12d 3813 | . . 3 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉) |
13 | df-i1p 7529 | . . 3 ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | |
14 | 12, 13 | eqtr4di 2244 | . 2 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = 1P) |
15 | 5, 14 | eqtr3d 2228 | 1 ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {cab 2179 〈cop 3622 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 1oc1o 6464 [cec 6587 Ncnpi 7334 ~Q ceq 7341 Qcnq 7342 1Qc1q 7343 ·Q cmq 7345 *Qcrq 7346 <Q cltq 7347 1Pc1p 7354 ·P cmp 7356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-enq0 7486 df-nq0 7487 df-0nq0 7488 df-plq0 7489 df-mq0 7490 df-inp 7528 df-i1p 7529 df-imp 7531 |
This theorem is referenced by: recidpirq 7920 |
Copyright terms: Public domain | W3C validator |