ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpipr GIF version

Theorem recidpipr 7868
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
Assertion
Ref Expression
recidpipr (๐‘ โˆˆ N โ†’ (โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ) = 1P)
Distinct variable group:   ๐‘,๐‘™,๐‘ข

Proof of Theorem recidpipr
StepHypRef Expression
1 nnnq 7434 . . 3 (๐‘ โˆˆ N โ†’ [โŸจ๐‘, 1oโŸฉ] ~Q โˆˆ Q)
2 recclnq 7404 . . . 4 ([โŸจ๐‘, 1oโŸฉ] ~Q โˆˆ Q โ†’ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) โˆˆ Q)
31, 2syl 14 . . 3 (๐‘ โˆˆ N โ†’ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) โˆˆ Q)
4 mulnqpr 7589 . . 3 (([โŸจ๐‘, 1oโŸฉ] ~Q โˆˆ Q โˆง (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) โˆˆ Q) โ†’ โŸจ{๐‘™ โˆฃ ๐‘™ <Q ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ))}, {๐‘ข โˆฃ ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )) <Q ๐‘ข}โŸฉ = (โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ))
51, 3, 4syl2anc 411 . 2 (๐‘ โˆˆ N โ†’ โŸจ{๐‘™ โˆฃ ๐‘™ <Q ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ))}, {๐‘ข โˆฃ ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )) <Q ๐‘ข}โŸฉ = (โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ))
6 recidnq 7405 . . . . . . 7 ([โŸจ๐‘, 1oโŸฉ] ~Q โˆˆ Q โ†’ ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )) = 1Q)
71, 6syl 14 . . . . . 6 (๐‘ โˆˆ N โ†’ ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )) = 1Q)
87breq2d 4027 . . . . 5 (๐‘ โˆˆ N โ†’ (๐‘™ <Q ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )) โ†” ๐‘™ <Q 1Q))
98abbidv 2305 . . . 4 (๐‘ โˆˆ N โ†’ {๐‘™ โˆฃ ๐‘™ <Q ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ))} = {๐‘™ โˆฃ ๐‘™ <Q 1Q})
107breq1d 4025 . . . . 5 (๐‘ โˆˆ N โ†’ (([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )) <Q ๐‘ข โ†” 1Q <Q ๐‘ข))
1110abbidv 2305 . . . 4 (๐‘ โˆˆ N โ†’ {๐‘ข โˆฃ ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )) <Q ๐‘ข} = {๐‘ข โˆฃ 1Q <Q ๐‘ข})
129, 11opeq12d 3798 . . 3 (๐‘ โˆˆ N โ†’ โŸจ{๐‘™ โˆฃ ๐‘™ <Q ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ))}, {๐‘ข โˆฃ ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )) <Q ๐‘ข}โŸฉ = โŸจ{๐‘™ โˆฃ ๐‘™ <Q 1Q}, {๐‘ข โˆฃ 1Q <Q ๐‘ข}โŸฉ)
13 df-i1p 7479 . . 3 1P = โŸจ{๐‘™ โˆฃ ๐‘™ <Q 1Q}, {๐‘ข โˆฃ 1Q <Q ๐‘ข}โŸฉ
1412, 13eqtr4di 2238 . 2 (๐‘ โˆˆ N โ†’ โŸจ{๐‘™ โˆฃ ๐‘™ <Q ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ))}, {๐‘ข โˆฃ ([โŸจ๐‘, 1oโŸฉ] ~Q ยทQ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )) <Q ๐‘ข}โŸฉ = 1P)
155, 14eqtr3d 2222 1 (๐‘ โˆˆ N โ†’ (โŸจ{๐‘™ โˆฃ ๐‘™ <Q [โŸจ๐‘, 1oโŸฉ] ~Q }, {๐‘ข โˆฃ [โŸจ๐‘, 1oโŸฉ] ~Q <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q )}, {๐‘ข โˆฃ (*Qโ€˜[โŸจ๐‘, 1oโŸฉ] ~Q ) <Q ๐‘ข}โŸฉ) = 1P)
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   = wceq 1363   โˆˆ wcel 2158  {cab 2173  โŸจcop 3607   class class class wbr 4015  โ€˜cfv 5228  (class class class)co 5888  1oc1o 6423  [cec 6546  Ncnpi 7284   ~Q ceq 7291  Qcnq 7292  1Qc1q 7293   ยทQ cmq 7295  *Qcrq 7296   <Q cltq 7297  1Pc1p 7304   ยทP cmp 7306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-eprel 4301  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-1o 6430  df-2o 6431  df-oadd 6434  df-omul 6435  df-er 6548  df-ec 6550  df-qs 6554  df-ni 7316  df-pli 7317  df-mi 7318  df-lti 7319  df-plpq 7356  df-mpq 7357  df-enq 7359  df-nqqs 7360  df-plqqs 7361  df-mqqs 7362  df-1nqqs 7363  df-rq 7364  df-ltnqqs 7365  df-enq0 7436  df-nq0 7437  df-0nq0 7438  df-plq0 7439  df-mq0 7440  df-inp 7478  df-i1p 7479  df-imp 7481
This theorem is referenced by:  recidpirq  7870
  Copyright terms: Public domain W3C validator