| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > recidpipr | GIF version | ||
| Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| recidpipr | ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnnq 7489 | . . 3 ⊢ (𝑁 ∈ N → [〈𝑁, 1o〉] ~Q ∈ Q) | |
| 2 | recclnq 7459 | . . . 4 ⊢ ([〈𝑁, 1o〉] ~Q ∈ Q → (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) | 
| 4 | mulnqpr 7644 | . . 3 ⊢ (([〈𝑁, 1o〉] ~Q ∈ Q ∧ (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉)) | |
| 5 | 1, 3, 4 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉)) | 
| 6 | recidnq 7460 | . . . . . . 7 ⊢ ([〈𝑁, 1o〉] ~Q ∈ Q → ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) = 1Q) | |
| 7 | 1, 6 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ N → ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) = 1Q) | 
| 8 | 7 | breq2d 4045 | . . . . 5 ⊢ (𝑁 ∈ N → (𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) ↔ 𝑙 <Q 1Q)) | 
| 9 | 8 | abbidv 2314 | . . . 4 ⊢ (𝑁 ∈ N → {𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))} = {𝑙 ∣ 𝑙 <Q 1Q}) | 
| 10 | 7 | breq1d 4043 | . . . . 5 ⊢ (𝑁 ∈ N → (([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢 ↔ 1Q <Q 𝑢)) | 
| 11 | 10 | abbidv 2314 | . . . 4 ⊢ (𝑁 ∈ N → {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢}) | 
| 12 | 9, 11 | opeq12d 3816 | . . 3 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉) | 
| 13 | df-i1p 7534 | . . 3 ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | |
| 14 | 12, 13 | eqtr4di 2247 | . 2 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = 1P) | 
| 15 | 5, 14 | eqtr3d 2231 | 1 ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {cab 2182 〈cop 3625 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 1oc1o 6467 [cec 6590 Ncnpi 7339 ~Q ceq 7346 Qcnq 7347 1Qc1q 7348 ·Q cmq 7350 *Qcrq 7351 <Q cltq 7352 1Pc1p 7359 ·P cmp 7361 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-imp 7536 | 
| This theorem is referenced by: recidpirq 7925 | 
| Copyright terms: Public domain | W3C validator |