ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpipr GIF version

Theorem recidpipr 7818
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
Assertion
Ref Expression
recidpipr (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
Distinct variable group:   𝑁,𝑙,𝑢

Proof of Theorem recidpipr
StepHypRef Expression
1 nnnq 7384 . . 3 (𝑁N → [⟨𝑁, 1o⟩] ~QQ)
2 recclnq 7354 . . . 4 ([⟨𝑁, 1o⟩] ~QQ → (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q)
31, 2syl 14 . . 3 (𝑁N → (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q)
4 mulnqpr 7539 . . 3 (([⟨𝑁, 1o⟩] ~QQ ∧ (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩))
51, 3, 4syl2anc 409 . 2 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩))
6 recidnq 7355 . . . . . . 7 ([⟨𝑁, 1o⟩] ~QQ → ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) = 1Q)
71, 6syl 14 . . . . . 6 (𝑁N → ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) = 1Q)
87breq2d 4001 . . . . 5 (𝑁N → (𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) ↔ 𝑙 <Q 1Q))
98abbidv 2288 . . . 4 (𝑁N → {𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))} = {𝑙𝑙 <Q 1Q})
107breq1d 3999 . . . . 5 (𝑁N → (([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢 ↔ 1Q <Q 𝑢))
1110abbidv 2288 . . . 4 (𝑁N → {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢})
129, 11opeq12d 3773 . . 3 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩)
13 df-i1p 7429 . . 3 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
1412, 13eqtr4di 2221 . 2 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = 1P)
155, 14eqtr3d 2205 1 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  {cab 2156  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1oc1o 6388  [cec 6511  Ncnpi 7234   ~Q ceq 7241  Qcnq 7242  1Qc1q 7243   ·Q cmq 7245  *Qcrq 7246   <Q cltq 7247  1Pc1p 7254   ·P cmp 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-imp 7431
This theorem is referenced by:  recidpirq  7820
  Copyright terms: Public domain W3C validator