ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpipr GIF version

Theorem recidpipr 7918
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
Assertion
Ref Expression
recidpipr (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
Distinct variable group:   𝑁,𝑙,𝑢

Proof of Theorem recidpipr
StepHypRef Expression
1 nnnq 7484 . . 3 (𝑁N → [⟨𝑁, 1o⟩] ~QQ)
2 recclnq 7454 . . . 4 ([⟨𝑁, 1o⟩] ~QQ → (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q)
31, 2syl 14 . . 3 (𝑁N → (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q)
4 mulnqpr 7639 . . 3 (([⟨𝑁, 1o⟩] ~QQ ∧ (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩))
51, 3, 4syl2anc 411 . 2 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩))
6 recidnq 7455 . . . . . . 7 ([⟨𝑁, 1o⟩] ~QQ → ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) = 1Q)
71, 6syl 14 . . . . . 6 (𝑁N → ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) = 1Q)
87breq2d 4042 . . . . 5 (𝑁N → (𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) ↔ 𝑙 <Q 1Q))
98abbidv 2311 . . . 4 (𝑁N → {𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))} = {𝑙𝑙 <Q 1Q})
107breq1d 4040 . . . . 5 (𝑁N → (([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢 ↔ 1Q <Q 𝑢))
1110abbidv 2311 . . . 4 (𝑁N → {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢})
129, 11opeq12d 3813 . . 3 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩)
13 df-i1p 7529 . . 3 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
1412, 13eqtr4di 2244 . 2 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = 1P)
155, 14eqtr3d 2228 1 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  {cab 2179  cop 3622   class class class wbr 4030  cfv 5255  (class class class)co 5919  1oc1o 6464  [cec 6587  Ncnpi 7334   ~Q ceq 7341  Qcnq 7342  1Qc1q 7343   ·Q cmq 7345  *Qcrq 7346   <Q cltq 7347  1Pc1p 7354   ·P cmp 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-imp 7531
This theorem is referenced by:  recidpirq  7920
  Copyright terms: Public domain W3C validator