Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recidpipr | GIF version |
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.) |
Ref | Expression |
---|---|
recidpipr | ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnq 7384 | . . 3 ⊢ (𝑁 ∈ N → [〈𝑁, 1o〉] ~Q ∈ Q) | |
2 | recclnq 7354 | . . . 4 ⊢ ([〈𝑁, 1o〉] ~Q ∈ Q → (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) |
4 | mulnqpr 7539 | . . 3 ⊢ (([〈𝑁, 1o〉] ~Q ∈ Q ∧ (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉)) | |
5 | 1, 3, 4 | syl2anc 409 | . 2 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉)) |
6 | recidnq 7355 | . . . . . . 7 ⊢ ([〈𝑁, 1o〉] ~Q ∈ Q → ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) = 1Q) | |
7 | 1, 6 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ N → ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) = 1Q) |
8 | 7 | breq2d 4001 | . . . . 5 ⊢ (𝑁 ∈ N → (𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) ↔ 𝑙 <Q 1Q)) |
9 | 8 | abbidv 2288 | . . . 4 ⊢ (𝑁 ∈ N → {𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))} = {𝑙 ∣ 𝑙 <Q 1Q}) |
10 | 7 | breq1d 3999 | . . . . 5 ⊢ (𝑁 ∈ N → (([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢 ↔ 1Q <Q 𝑢)) |
11 | 10 | abbidv 2288 | . . . 4 ⊢ (𝑁 ∈ N → {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢}) |
12 | 9, 11 | opeq12d 3773 | . . 3 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉) |
13 | df-i1p 7429 | . . 3 ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | |
14 | 12, 13 | eqtr4di 2221 | . 2 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = 1P) |
15 | 5, 14 | eqtr3d 2205 | 1 ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 {cab 2156 〈cop 3586 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 1oc1o 6388 [cec 6511 Ncnpi 7234 ~Q ceq 7241 Qcnq 7242 1Qc1q 7243 ·Q cmq 7245 *Qcrq 7246 <Q cltq 7247 1Pc1p 7254 ·P cmp 7256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-imp 7431 |
This theorem is referenced by: recidpirq 7820 |
Copyright terms: Public domain | W3C validator |