ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpipr GIF version

Theorem recidpipr 7591
Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
Assertion
Ref Expression
recidpipr (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
Distinct variable group:   𝑁,𝑙,𝑢

Proof of Theorem recidpipr
StepHypRef Expression
1 nnnq 7178 . . 3 (𝑁N → [⟨𝑁, 1o⟩] ~QQ)
2 recclnq 7148 . . . 4 ([⟨𝑁, 1o⟩] ~QQ → (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q)
31, 2syl 14 . . 3 (𝑁N → (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q)
4 mulnqpr 7333 . . 3 (([⟨𝑁, 1o⟩] ~QQ ∧ (*Q‘[⟨𝑁, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩))
51, 3, 4syl2anc 406 . 2 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩))
6 recidnq 7149 . . . . . . 7 ([⟨𝑁, 1o⟩] ~QQ → ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) = 1Q)
71, 6syl 14 . . . . . 6 (𝑁N → ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) = 1Q)
87breq2d 3907 . . . . 5 (𝑁N → (𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) ↔ 𝑙 <Q 1Q))
98abbidv 2232 . . . 4 (𝑁N → {𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))} = {𝑙𝑙 <Q 1Q})
107breq1d 3905 . . . . 5 (𝑁N → (([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢 ↔ 1Q <Q 𝑢))
1110abbidv 2232 . . . 4 (𝑁N → {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢})
129, 11opeq12d 3679 . . 3 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩)
13 df-i1p 7223 . . 3 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
1412, 13syl6eqr 2165 . 2 (𝑁N → ⟨{𝑙𝑙 <Q ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q ))}, {𝑢 ∣ ([⟨𝑁, 1o⟩] ~Q ·Q (*Q‘[⟨𝑁, 1o⟩] ~Q )) <Q 𝑢}⟩ = 1P)
155, 14eqtr3d 2149 1 (𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  wcel 1463  {cab 2101  cop 3496   class class class wbr 3895  cfv 5081  (class class class)co 5728  1oc1o 6260  [cec 6381  Ncnpi 7028   ~Q ceq 7035  Qcnq 7036  1Qc1q 7037   ·Q cmq 7039  *Qcrq 7040   <Q cltq 7041  1Pc1p 7048   ·P cmp 7050
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-plpq 7100  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-plqqs 7105  df-mqqs 7106  df-1nqqs 7107  df-rq 7108  df-ltnqqs 7109  df-enq0 7180  df-nq0 7181  df-0nq0 7182  df-plq0 7183  df-mq0 7184  df-inp 7222  df-i1p 7223  df-imp 7225
This theorem is referenced by:  recidpirq  7593
  Copyright terms: Public domain W3C validator