| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recidpipr | GIF version | ||
| Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.) |
| Ref | Expression |
|---|---|
| recidpipr | ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnq 7617 | . . 3 ⊢ (𝑁 ∈ N → [〈𝑁, 1o〉] ~Q ∈ Q) | |
| 2 | recclnq 7587 | . . . 4 ⊢ ([〈𝑁, 1o〉] ~Q ∈ Q → (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) |
| 4 | mulnqpr 7772 | . . 3 ⊢ (([〈𝑁, 1o〉] ~Q ∈ Q ∧ (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉)) | |
| 5 | 1, 3, 4 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉)) |
| 6 | recidnq 7588 | . . . . . . 7 ⊢ ([〈𝑁, 1o〉] ~Q ∈ Q → ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) = 1Q) | |
| 7 | 1, 6 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ N → ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) = 1Q) |
| 8 | 7 | breq2d 4095 | . . . . 5 ⊢ (𝑁 ∈ N → (𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) ↔ 𝑙 <Q 1Q)) |
| 9 | 8 | abbidv 2347 | . . . 4 ⊢ (𝑁 ∈ N → {𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))} = {𝑙 ∣ 𝑙 <Q 1Q}) |
| 10 | 7 | breq1d 4093 | . . . . 5 ⊢ (𝑁 ∈ N → (([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢 ↔ 1Q <Q 𝑢)) |
| 11 | 10 | abbidv 2347 | . . . 4 ⊢ (𝑁 ∈ N → {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢}) |
| 12 | 9, 11 | opeq12d 3865 | . . 3 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉) |
| 13 | df-i1p 7662 | . . 3 ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | |
| 14 | 12, 13 | eqtr4di 2280 | . 2 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = 1P) |
| 15 | 5, 14 | eqtr3d 2264 | 1 ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {cab 2215 〈cop 3669 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 1oc1o 6561 [cec 6686 Ncnpi 7467 ~Q ceq 7474 Qcnq 7475 1Qc1q 7476 ·Q cmq 7478 *Qcrq 7479 <Q cltq 7480 1Pc1p 7487 ·P cmp 7489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-2o 6569 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-pli 7500 df-mi 7501 df-lti 7502 df-plpq 7539 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-plqqs 7544 df-mqqs 7545 df-1nqqs 7546 df-rq 7547 df-ltnqqs 7548 df-enq0 7619 df-nq0 7620 df-0nq0 7621 df-plq0 7622 df-mq0 7623 df-inp 7661 df-i1p 7662 df-imp 7664 |
| This theorem is referenced by: recidpirq 8053 |
| Copyright terms: Public domain | W3C validator |