| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recidpipr | GIF version | ||
| Description: Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.) |
| Ref | Expression |
|---|---|
| recidpipr | ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnq 7542 | . . 3 ⊢ (𝑁 ∈ N → [〈𝑁, 1o〉] ~Q ∈ Q) | |
| 2 | recclnq 7512 | . . . 4 ⊢ ([〈𝑁, 1o〉] ~Q ∈ Q → (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) |
| 4 | mulnqpr 7697 | . . 3 ⊢ (([〈𝑁, 1o〉] ~Q ∈ Q ∧ (*Q‘[〈𝑁, 1o〉] ~Q ) ∈ Q) → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉)) | |
| 5 | 1, 3, 4 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉)) |
| 6 | recidnq 7513 | . . . . . . 7 ⊢ ([〈𝑁, 1o〉] ~Q ∈ Q → ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) = 1Q) | |
| 7 | 1, 6 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ N → ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) = 1Q) |
| 8 | 7 | breq2d 4059 | . . . . 5 ⊢ (𝑁 ∈ N → (𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) ↔ 𝑙 <Q 1Q)) |
| 9 | 8 | abbidv 2324 | . . . 4 ⊢ (𝑁 ∈ N → {𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))} = {𝑙 ∣ 𝑙 <Q 1Q}) |
| 10 | 7 | breq1d 4057 | . . . . 5 ⊢ (𝑁 ∈ N → (([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢 ↔ 1Q <Q 𝑢)) |
| 11 | 10 | abbidv 2324 | . . . 4 ⊢ (𝑁 ∈ N → {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢}) |
| 12 | 9, 11 | opeq12d 3829 | . . 3 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉) |
| 13 | df-i1p 7587 | . . 3 ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | |
| 14 | 12, 13 | eqtr4di 2257 | . 2 ⊢ (𝑁 ∈ N → 〈{𝑙 ∣ 𝑙 <Q ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q ))}, {𝑢 ∣ ([〈𝑁, 1o〉] ~Q ·Q (*Q‘[〈𝑁, 1o〉] ~Q )) <Q 𝑢}〉 = 1P) |
| 15 | 5, 14 | eqtr3d 2241 | 1 ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {cab 2192 〈cop 3637 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 1oc1o 6502 [cec 6625 Ncnpi 7392 ~Q ceq 7399 Qcnq 7400 1Qc1q 7401 ·Q cmq 7403 *Qcrq 7404 <Q cltq 7405 1Pc1p 7412 ·P cmp 7414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-2o 6510 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-mqqs 7470 df-1nqqs 7471 df-rq 7472 df-ltnqqs 7473 df-enq0 7544 df-nq0 7545 df-0nq0 7546 df-plq0 7547 df-mq0 7548 df-inp 7586 df-i1p 7587 df-imp 7589 |
| This theorem is referenced by: recidpirq 7978 |
| Copyright terms: Public domain | W3C validator |