Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recidpirqlemcalc | Unicode version |
Description: Lemma for recidpirq 7799. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.) |
Ref | Expression |
---|---|
recidpirqlemcalc.a | |
recidpirqlemcalc.b | |
recidpirqlemcalc.rec |
Ref | Expression |
---|---|
recidpirqlemcalc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recidpirqlemcalc.a | . . . . 5 | |
2 | 1pr 7495 | . . . . . 6 | |
3 | 2 | a1i 9 | . . . . 5 |
4 | addclpr 7478 | . . . . 5 | |
5 | 1, 3, 4 | syl2anc 409 | . . . 4 |
6 | recidpirqlemcalc.b | . . . . 5 | |
7 | addclpr 7478 | . . . . 5 | |
8 | 6, 3, 7 | syl2anc 409 | . . . 4 |
9 | addclpr 7478 | . . . 4 | |
10 | 5, 8, 9 | syl2anc 409 | . . 3 |
11 | addassprg 7520 | . . 3 | |
12 | 10, 3, 3, 11 | syl3anc 1228 | . 2 |
13 | distrprg 7529 | . . . . . . 7 | |
14 | 5, 6, 3, 13 | syl3anc 1228 | . . . . . 6 |
15 | 1idpr 7533 | . . . . . . . 8 | |
16 | 5, 15 | syl 14 | . . . . . . 7 |
17 | 16 | oveq2d 5858 | . . . . . 6 |
18 | mulcomprg 7521 | . . . . . . . . 9 | |
19 | 5, 6, 18 | syl2anc 409 | . . . . . . . 8 |
20 | distrprg 7529 | . . . . . . . . 9 | |
21 | 6, 1, 3, 20 | syl3anc 1228 | . . . . . . . 8 |
22 | mulcomprg 7521 | . . . . . . . . . . 11 | |
23 | 6, 1, 22 | syl2anc 409 | . . . . . . . . . 10 |
24 | recidpirqlemcalc.rec | . . . . . . . . . 10 | |
25 | 23, 24 | eqtrd 2198 | . . . . . . . . 9 |
26 | 1idpr 7533 | . . . . . . . . . 10 | |
27 | 6, 26 | syl 14 | . . . . . . . . 9 |
28 | 25, 27 | oveq12d 5860 | . . . . . . . 8 |
29 | 19, 21, 28 | 3eqtrd 2202 | . . . . . . 7 |
30 | 29 | oveq1d 5857 | . . . . . 6 |
31 | 14, 17, 30 | 3eqtrd 2202 | . . . . 5 |
32 | 1idpr 7533 | . . . . . 6 | |
33 | 2, 32 | mp1i 10 | . . . . 5 |
34 | 31, 33 | oveq12d 5860 | . . . 4 |
35 | addcomprg 7519 | . . . . . . . 8 | |
36 | 3, 6, 35 | syl2anc 409 | . . . . . . 7 |
37 | 36 | oveq1d 5857 | . . . . . 6 |
38 | addcomprg 7519 | . . . . . . 7 | |
39 | 8, 5, 38 | syl2anc 409 | . . . . . 6 |
40 | 37, 39 | eqtrd 2198 | . . . . 5 |
41 | 40 | oveq1d 5857 | . . . 4 |
42 | 34, 41 | eqtrd 2198 | . . 3 |
43 | 42 | oveq1d 5857 | . 2 |
44 | mulcomprg 7521 | . . . . . 6 | |
45 | 3, 8, 44 | syl2anc 409 | . . . . 5 |
46 | 1idpr 7533 | . . . . . 6 | |
47 | 8, 46 | syl 14 | . . . . 5 |
48 | 45, 47 | eqtrd 2198 | . . . 4 |
49 | 16, 48 | oveq12d 5860 | . . 3 |
50 | 49 | oveq1d 5857 | . 2 |
51 | 12, 43, 50 | 3eqtr4d 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 (class class class)co 5842 cnp 7232 c1p 7233 cpp 7234 cmp 7235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-imp 7410 |
This theorem is referenced by: recidpirq 7799 |
Copyright terms: Public domain | W3C validator |