ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpirqlemcalc Unicode version

Theorem recidpirqlemcalc 7819
Description: Lemma for recidpirq 7820. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
Hypotheses
Ref Expression
recidpirqlemcalc.a  |-  ( ph  ->  A  e.  P. )
recidpirqlemcalc.b  |-  ( ph  ->  B  e.  P. )
recidpirqlemcalc.rec  |-  ( ph  ->  ( A  .P.  B
)  =  1P )
Assertion
Ref Expression
recidpirqlemcalc  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  +P.  1P )  =  ( ( ( ( A  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  +P.  ( 1P 
+P.  1P ) ) )

Proof of Theorem recidpirqlemcalc
StepHypRef Expression
1 recidpirqlemcalc.a . . . . 5  |-  ( ph  ->  A  e.  P. )
2 1pr 7516 . . . . . 6  |-  1P  e.  P.
32a1i 9 . . . . 5  |-  ( ph  ->  1P  e.  P. )
4 addclpr 7499 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
51, 3, 4syl2anc 409 . . . 4  |-  ( ph  ->  ( A  +P.  1P )  e.  P. )
6 recidpirqlemcalc.b . . . . 5  |-  ( ph  ->  B  e.  P. )
7 addclpr 7499 . . . . 5  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
86, 3, 7syl2anc 409 . . . 4  |-  ( ph  ->  ( B  +P.  1P )  e.  P. )
9 addclpr 7499 . . . 4  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
105, 8, 9syl2anc 409 . . 3  |-  ( ph  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
11 addassprg 7541 . . 3  |-  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  +P. 
1P )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  ( 1P  +P.  1P ) ) )
1210, 3, 3, 11syl3anc 1233 . 2  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  +P.  1P )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  ( 1P  +P.  1P ) ) )
13 distrprg 7550 . . . . . . 7  |-  ( ( ( A  +P.  1P )  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  =  ( ( ( A  +P.  1P )  .P.  B )  +P.  ( ( A  +P.  1P )  .P. 
1P ) ) )
145, 6, 3, 13syl3anc 1233 . . . . . 6  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  =  ( ( ( A  +P.  1P )  .P.  B )  +P.  ( ( A  +P.  1P )  .P.  1P ) ) )
15 1idpr 7554 . . . . . . . 8  |-  ( ( A  +P.  1P )  e.  P.  ->  (
( A  +P.  1P )  .P.  1P )  =  ( A  +P.  1P ) )
165, 15syl 14 . . . . . . 7  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  1P )  =  ( A  +P.  1P ) )
1716oveq2d 5869 . . . . . 6  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P. 
B )  +P.  (
( A  +P.  1P )  .P.  1P ) )  =  ( ( ( A  +P.  1P )  .P.  B )  +P.  ( A  +P.  1P ) ) )
18 mulcomprg 7542 . . . . . . . . 9  |-  ( ( ( A  +P.  1P )  e.  P.  /\  B  e.  P. )  ->  (
( A  +P.  1P )  .P.  B )  =  ( B  .P.  ( A  +P.  1P ) ) )
195, 6, 18syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  B )  =  ( B  .P.  ( A  +P.  1P ) ) )
20 distrprg 7550 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  1P  e.  P. )  ->  ( B  .P.  ( A  +P.  1P ) )  =  ( ( B  .P.  A
)  +P.  ( B  .P.  1P ) ) )
216, 1, 3, 20syl3anc 1233 . . . . . . . 8  |-  ( ph  ->  ( B  .P.  ( A  +P.  1P ) )  =  ( ( B  .P.  A )  +P.  ( B  .P.  1P ) ) )
22 mulcomprg 7542 . . . . . . . . . . 11  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  .P.  A
)  =  ( A  .P.  B ) )
236, 1, 22syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  ( B  .P.  A
)  =  ( A  .P.  B ) )
24 recidpirqlemcalc.rec . . . . . . . . . 10  |-  ( ph  ->  ( A  .P.  B
)  =  1P )
2523, 24eqtrd 2203 . . . . . . . . 9  |-  ( ph  ->  ( B  .P.  A
)  =  1P )
26 1idpr 7554 . . . . . . . . . 10  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  B )
276, 26syl 14 . . . . . . . . 9  |-  ( ph  ->  ( B  .P.  1P )  =  B )
2825, 27oveq12d 5871 . . . . . . . 8  |-  ( ph  ->  ( ( B  .P.  A )  +P.  ( B  .P.  1P ) )  =  ( 1P  +P.  B ) )
2919, 21, 283eqtrd 2207 . . . . . . 7  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  B )  =  ( 1P  +P.  B ) )
3029oveq1d 5868 . . . . . 6  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P. 
B )  +P.  ( A  +P.  1P ) )  =  ( ( 1P 
+P.  B )  +P.  ( A  +P.  1P ) ) )
3114, 17, 303eqtrd 2207 . . . . 5  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  =  ( ( 1P 
+P.  B )  +P.  ( A  +P.  1P ) ) )
32 1idpr 7554 . . . . . 6  |-  ( 1P  e.  P.  ->  ( 1P  .P.  1P )  =  1P )
332, 32mp1i 10 . . . . 5  |-  ( ph  ->  ( 1P  .P.  1P )  =  1P )
3431, 33oveq12d 5871 . . . 4  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  =  ( ( ( 1P  +P.  B )  +P.  ( A  +P.  1P ) )  +P.  1P ) )
35 addcomprg 7540 . . . . . . . 8  |-  ( ( 1P  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  =  ( B  +P.  1P ) )
363, 6, 35syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( 1P  +P.  B
)  =  ( B  +P.  1P ) )
3736oveq1d 5868 . . . . . 6  |-  ( ph  ->  ( ( 1P  +P.  B )  +P.  ( A  +P.  1P ) )  =  ( ( B  +P.  1P )  +P.  ( A  +P.  1P ) ) )
38 addcomprg 7540 . . . . . . 7  |-  ( ( ( B  +P.  1P )  e.  P.  /\  ( A  +P.  1P )  e. 
P. )  ->  (
( B  +P.  1P )  +P.  ( A  +P.  1P ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
398, 5, 38syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( B  +P.  1P )  +P.  ( A  +P.  1P ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
4037, 39eqtrd 2203 . . . . 5  |-  ( ph  ->  ( ( 1P  +P.  B )  +P.  ( A  +P.  1P ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
4140oveq1d 5868 . . . 4  |-  ( ph  ->  ( ( ( 1P 
+P.  B )  +P.  ( A  +P.  1P ) )  +P.  1P )  =  ( (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P ) )
4234, 41eqtrd 2203 . . 3  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P ) )
4342oveq1d 5868 . 2  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  +P.  1P )  =  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  +P.  1P ) )
44 mulcomprg 7542 . . . . . 6  |-  ( ( 1P  e.  P.  /\  ( B  +P.  1P )  e.  P. )  -> 
( 1P  .P.  ( B  +P.  1P ) )  =  ( ( B  +P.  1P )  .P. 
1P ) )
453, 8, 44syl2anc 409 . . . . 5  |-  ( ph  ->  ( 1P  .P.  ( B  +P.  1P ) )  =  ( ( B  +P.  1P )  .P. 
1P ) )
46 1idpr 7554 . . . . . 6  |-  ( ( B  +P.  1P )  e.  P.  ->  (
( B  +P.  1P )  .P.  1P )  =  ( B  +P.  1P ) )
478, 46syl 14 . . . . 5  |-  ( ph  ->  ( ( B  +P.  1P )  .P.  1P )  =  ( B  +P.  1P ) )
4845, 47eqtrd 2203 . . . 4  |-  ( ph  ->  ( 1P  .P.  ( B  +P.  1P ) )  =  ( B  +P.  1P ) )
4916, 48oveq12d 5871 . . 3  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
5049oveq1d 5868 . 2  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  +P.  ( 1P 
+P.  1P ) )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  ( 1P  +P.  1P ) ) )
5112, 43, 503eqtr4d 2213 1  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  +P.  1P )  =  ( ( ( ( A  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  +P.  ( 1P 
+P.  1P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141  (class class class)co 5853   P.cnp 7253   1Pc1p 7254    +P. cpp 7255    .P. cmp 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431
This theorem is referenced by:  recidpirq  7820
  Copyright terms: Public domain W3C validator