Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recidpirqlemcalc | Unicode version |
Description: Lemma for recidpirq 7809. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.) |
Ref | Expression |
---|---|
recidpirqlemcalc.a | |
recidpirqlemcalc.b | |
recidpirqlemcalc.rec |
Ref | Expression |
---|---|
recidpirqlemcalc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recidpirqlemcalc.a | . . . . 5 | |
2 | 1pr 7505 | . . . . . 6 | |
3 | 2 | a1i 9 | . . . . 5 |
4 | addclpr 7488 | . . . . 5 | |
5 | 1, 3, 4 | syl2anc 409 | . . . 4 |
6 | recidpirqlemcalc.b | . . . . 5 | |
7 | addclpr 7488 | . . . . 5 | |
8 | 6, 3, 7 | syl2anc 409 | . . . 4 |
9 | addclpr 7488 | . . . 4 | |
10 | 5, 8, 9 | syl2anc 409 | . . 3 |
11 | addassprg 7530 | . . 3 | |
12 | 10, 3, 3, 11 | syl3anc 1233 | . 2 |
13 | distrprg 7539 | . . . . . . 7 | |
14 | 5, 6, 3, 13 | syl3anc 1233 | . . . . . 6 |
15 | 1idpr 7543 | . . . . . . . 8 | |
16 | 5, 15 | syl 14 | . . . . . . 7 |
17 | 16 | oveq2d 5867 | . . . . . 6 |
18 | mulcomprg 7531 | . . . . . . . . 9 | |
19 | 5, 6, 18 | syl2anc 409 | . . . . . . . 8 |
20 | distrprg 7539 | . . . . . . . . 9 | |
21 | 6, 1, 3, 20 | syl3anc 1233 | . . . . . . . 8 |
22 | mulcomprg 7531 | . . . . . . . . . . 11 | |
23 | 6, 1, 22 | syl2anc 409 | . . . . . . . . . 10 |
24 | recidpirqlemcalc.rec | . . . . . . . . . 10 | |
25 | 23, 24 | eqtrd 2203 | . . . . . . . . 9 |
26 | 1idpr 7543 | . . . . . . . . . 10 | |
27 | 6, 26 | syl 14 | . . . . . . . . 9 |
28 | 25, 27 | oveq12d 5869 | . . . . . . . 8 |
29 | 19, 21, 28 | 3eqtrd 2207 | . . . . . . 7 |
30 | 29 | oveq1d 5866 | . . . . . 6 |
31 | 14, 17, 30 | 3eqtrd 2207 | . . . . 5 |
32 | 1idpr 7543 | . . . . . 6 | |
33 | 2, 32 | mp1i 10 | . . . . 5 |
34 | 31, 33 | oveq12d 5869 | . . . 4 |
35 | addcomprg 7529 | . . . . . . . 8 | |
36 | 3, 6, 35 | syl2anc 409 | . . . . . . 7 |
37 | 36 | oveq1d 5866 | . . . . . 6 |
38 | addcomprg 7529 | . . . . . . 7 | |
39 | 8, 5, 38 | syl2anc 409 | . . . . . 6 |
40 | 37, 39 | eqtrd 2203 | . . . . 5 |
41 | 40 | oveq1d 5866 | . . . 4 |
42 | 34, 41 | eqtrd 2203 | . . 3 |
43 | 42 | oveq1d 5866 | . 2 |
44 | mulcomprg 7531 | . . . . . 6 | |
45 | 3, 8, 44 | syl2anc 409 | . . . . 5 |
46 | 1idpr 7543 | . . . . . 6 | |
47 | 8, 46 | syl 14 | . . . . 5 |
48 | 45, 47 | eqtrd 2203 | . . . 4 |
49 | 16, 48 | oveq12d 5869 | . . 3 |
50 | 49 | oveq1d 5866 | . 2 |
51 | 12, 43, 50 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 (class class class)co 5851 cnp 7242 c1p 7243 cpp 7244 cmp 7245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-eprel 4272 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-irdg 6347 df-1o 6393 df-2o 6394 df-oadd 6397 df-omul 6398 df-er 6510 df-ec 6512 df-qs 6516 df-ni 7255 df-pli 7256 df-mi 7257 df-lti 7258 df-plpq 7295 df-mpq 7296 df-enq 7298 df-nqqs 7299 df-plqqs 7300 df-mqqs 7301 df-1nqqs 7302 df-rq 7303 df-ltnqqs 7304 df-enq0 7375 df-nq0 7376 df-0nq0 7377 df-plq0 7378 df-mq0 7379 df-inp 7417 df-i1p 7418 df-iplp 7419 df-imp 7420 |
This theorem is referenced by: recidpirq 7809 |
Copyright terms: Public domain | W3C validator |