ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpirqlemcalc Unicode version

Theorem recidpirqlemcalc 7970
Description: Lemma for recidpirq 7971. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
Hypotheses
Ref Expression
recidpirqlemcalc.a  |-  ( ph  ->  A  e.  P. )
recidpirqlemcalc.b  |-  ( ph  ->  B  e.  P. )
recidpirqlemcalc.rec  |-  ( ph  ->  ( A  .P.  B
)  =  1P )
Assertion
Ref Expression
recidpirqlemcalc  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  +P.  1P )  =  ( ( ( ( A  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  +P.  ( 1P 
+P.  1P ) ) )

Proof of Theorem recidpirqlemcalc
StepHypRef Expression
1 recidpirqlemcalc.a . . . . 5  |-  ( ph  ->  A  e.  P. )
2 1pr 7667 . . . . . 6  |-  1P  e.  P.
32a1i 9 . . . . 5  |-  ( ph  ->  1P  e.  P. )
4 addclpr 7650 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
51, 3, 4syl2anc 411 . . . 4  |-  ( ph  ->  ( A  +P.  1P )  e.  P. )
6 recidpirqlemcalc.b . . . . 5  |-  ( ph  ->  B  e.  P. )
7 addclpr 7650 . . . . 5  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
86, 3, 7syl2anc 411 . . . 4  |-  ( ph  ->  ( B  +P.  1P )  e.  P. )
9 addclpr 7650 . . . 4  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
105, 8, 9syl2anc 411 . . 3  |-  ( ph  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
11 addassprg 7692 . . 3  |-  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  +P. 
1P )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  ( 1P  +P.  1P ) ) )
1210, 3, 3, 11syl3anc 1250 . 2  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  +P.  1P )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  ( 1P  +P.  1P ) ) )
13 distrprg 7701 . . . . . . 7  |-  ( ( ( A  +P.  1P )  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  =  ( ( ( A  +P.  1P )  .P.  B )  +P.  ( ( A  +P.  1P )  .P. 
1P ) ) )
145, 6, 3, 13syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  =  ( ( ( A  +P.  1P )  .P.  B )  +P.  ( ( A  +P.  1P )  .P.  1P ) ) )
15 1idpr 7705 . . . . . . . 8  |-  ( ( A  +P.  1P )  e.  P.  ->  (
( A  +P.  1P )  .P.  1P )  =  ( A  +P.  1P ) )
165, 15syl 14 . . . . . . 7  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  1P )  =  ( A  +P.  1P ) )
1716oveq2d 5960 . . . . . 6  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P. 
B )  +P.  (
( A  +P.  1P )  .P.  1P ) )  =  ( ( ( A  +P.  1P )  .P.  B )  +P.  ( A  +P.  1P ) ) )
18 mulcomprg 7693 . . . . . . . . 9  |-  ( ( ( A  +P.  1P )  e.  P.  /\  B  e.  P. )  ->  (
( A  +P.  1P )  .P.  B )  =  ( B  .P.  ( A  +P.  1P ) ) )
195, 6, 18syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  B )  =  ( B  .P.  ( A  +P.  1P ) ) )
20 distrprg 7701 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  1P  e.  P. )  ->  ( B  .P.  ( A  +P.  1P ) )  =  ( ( B  .P.  A
)  +P.  ( B  .P.  1P ) ) )
216, 1, 3, 20syl3anc 1250 . . . . . . . 8  |-  ( ph  ->  ( B  .P.  ( A  +P.  1P ) )  =  ( ( B  .P.  A )  +P.  ( B  .P.  1P ) ) )
22 mulcomprg 7693 . . . . . . . . . . 11  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  .P.  A
)  =  ( A  .P.  B ) )
236, 1, 22syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( B  .P.  A
)  =  ( A  .P.  B ) )
24 recidpirqlemcalc.rec . . . . . . . . . 10  |-  ( ph  ->  ( A  .P.  B
)  =  1P )
2523, 24eqtrd 2238 . . . . . . . . 9  |-  ( ph  ->  ( B  .P.  A
)  =  1P )
26 1idpr 7705 . . . . . . . . . 10  |-  ( B  e.  P.  ->  ( B  .P.  1P )  =  B )
276, 26syl 14 . . . . . . . . 9  |-  ( ph  ->  ( B  .P.  1P )  =  B )
2825, 27oveq12d 5962 . . . . . . . 8  |-  ( ph  ->  ( ( B  .P.  A )  +P.  ( B  .P.  1P ) )  =  ( 1P  +P.  B ) )
2919, 21, 283eqtrd 2242 . . . . . . 7  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  B )  =  ( 1P  +P.  B ) )
3029oveq1d 5959 . . . . . 6  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P. 
B )  +P.  ( A  +P.  1P ) )  =  ( ( 1P 
+P.  B )  +P.  ( A  +P.  1P ) ) )
3114, 17, 303eqtrd 2242 . . . . 5  |-  ( ph  ->  ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  =  ( ( 1P 
+P.  B )  +P.  ( A  +P.  1P ) ) )
32 1idpr 7705 . . . . . 6  |-  ( 1P  e.  P.  ->  ( 1P  .P.  1P )  =  1P )
332, 32mp1i 10 . . . . 5  |-  ( ph  ->  ( 1P  .P.  1P )  =  1P )
3431, 33oveq12d 5962 . . . 4  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  =  ( ( ( 1P  +P.  B )  +P.  ( A  +P.  1P ) )  +P.  1P ) )
35 addcomprg 7691 . . . . . . . 8  |-  ( ( 1P  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  =  ( B  +P.  1P ) )
363, 6, 35syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( 1P  +P.  B
)  =  ( B  +P.  1P ) )
3736oveq1d 5959 . . . . . 6  |-  ( ph  ->  ( ( 1P  +P.  B )  +P.  ( A  +P.  1P ) )  =  ( ( B  +P.  1P )  +P.  ( A  +P.  1P ) ) )
38 addcomprg 7691 . . . . . . 7  |-  ( ( ( B  +P.  1P )  e.  P.  /\  ( A  +P.  1P )  e. 
P. )  ->  (
( B  +P.  1P )  +P.  ( A  +P.  1P ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
398, 5, 38syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( B  +P.  1P )  +P.  ( A  +P.  1P ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
4037, 39eqtrd 2238 . . . . 5  |-  ( ph  ->  ( ( 1P  +P.  B )  +P.  ( A  +P.  1P ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
4140oveq1d 5959 . . . 4  |-  ( ph  ->  ( ( ( 1P 
+P.  B )  +P.  ( A  +P.  1P ) )  +P.  1P )  =  ( (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P ) )
4234, 41eqtrd 2238 . . 3  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P ) )
4342oveq1d 5959 . 2  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  +P.  1P )  =  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  +P.  1P ) )
44 mulcomprg 7693 . . . . . 6  |-  ( ( 1P  e.  P.  /\  ( B  +P.  1P )  e.  P. )  -> 
( 1P  .P.  ( B  +P.  1P ) )  =  ( ( B  +P.  1P )  .P. 
1P ) )
453, 8, 44syl2anc 411 . . . . 5  |-  ( ph  ->  ( 1P  .P.  ( B  +P.  1P ) )  =  ( ( B  +P.  1P )  .P. 
1P ) )
46 1idpr 7705 . . . . . 6  |-  ( ( B  +P.  1P )  e.  P.  ->  (
( B  +P.  1P )  .P.  1P )  =  ( B  +P.  1P ) )
478, 46syl 14 . . . . 5  |-  ( ph  ->  ( ( B  +P.  1P )  .P.  1P )  =  ( B  +P.  1P ) )
4845, 47eqtrd 2238 . . . 4  |-  ( ph  ->  ( 1P  .P.  ( B  +P.  1P ) )  =  ( B  +P.  1P ) )
4916, 48oveq12d 5962 . . 3  |-  ( ph  ->  ( ( ( A  +P.  1P )  .P. 
1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  =  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) )
5049oveq1d 5959 . 2  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  +P.  ( 1P 
+P.  1P ) )  =  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  ( 1P  +P.  1P ) ) )
5112, 43, 503eqtr4d 2248 1  |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) )  +P.  1P )  =  ( ( ( ( A  +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P ) ) )  +P.  ( 1P 
+P.  1P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176  (class class class)co 5944   P.cnp 7404   1Pc1p 7405    +P. cpp 7406    .P. cmp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-i1p 7580  df-iplp 7581  df-imp 7582
This theorem is referenced by:  recidpirq  7971
  Copyright terms: Public domain W3C validator