Proof of Theorem recidpirqlemcalc
Step | Hyp | Ref
| Expression |
1 | | recidpirqlemcalc.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ P) |
2 | | 1pr 7457 |
. . . . . 6
⊢
1P ∈ P |
3 | 2 | a1i 9 |
. . . . 5
⊢ (𝜑 →
1P ∈ P) |
4 | | addclpr 7440 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
1P ∈ P) → (𝐴 +P
1P) ∈ P) |
5 | 1, 3, 4 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝐴 +P
1P) ∈ P) |
6 | | recidpirqlemcalc.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ P) |
7 | | addclpr 7440 |
. . . . 5
⊢ ((𝐵 ∈ P ∧
1P ∈ P) → (𝐵 +P
1P) ∈ P) |
8 | 6, 3, 7 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝐵 +P
1P) ∈ P) |
9 | | addclpr 7440 |
. . . 4
⊢ (((𝐴 +P
1P) ∈ P ∧ (𝐵 +P
1P) ∈ P) → ((𝐴 +P
1P) +P (𝐵 +P
1P)) ∈ P) |
10 | 5, 8, 9 | syl2anc 409 |
. . 3
⊢ (𝜑 → ((𝐴 +P
1P) +P (𝐵 +P
1P)) ∈ P) |
11 | | addassprg 7482 |
. . 3
⊢ ((((𝐴 +P
1P) +P (𝐵 +P
1P)) ∈ P ∧
1P ∈ P ∧
1P ∈ P) → ((((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P) +P
1P) = (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
(1P +P
1P))) |
12 | 10, 3, 3, 11 | syl3anc 1220 |
. 2
⊢ (𝜑 → ((((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P) +P
1P) = (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
(1P +P
1P))) |
13 | | distrprg 7491 |
. . . . . . 7
⊢ (((𝐴 +P
1P) ∈ P ∧ 𝐵 ∈ P ∧
1P ∈ P) → ((𝐴 +P
1P) ·P (𝐵 +P
1P)) = (((𝐴 +P
1P) ·P 𝐵) +P
((𝐴
+P 1P)
·P
1P))) |
14 | 5, 6, 3, 13 | syl3anc 1220 |
. . . . . 6
⊢ (𝜑 → ((𝐴 +P
1P) ·P (𝐵 +P
1P)) = (((𝐴 +P
1P) ·P 𝐵) +P
((𝐴
+P 1P)
·P
1P))) |
15 | | 1idpr 7495 |
. . . . . . . 8
⊢ ((𝐴 +P
1P) ∈ P → ((𝐴 +P
1P) ·P
1P) = (𝐴 +P
1P)) |
16 | 5, 15 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 +P
1P) ·P
1P) = (𝐴 +P
1P)) |
17 | 16 | oveq2d 5834 |
. . . . . 6
⊢ (𝜑 → (((𝐴 +P
1P) ·P 𝐵) +P
((𝐴
+P 1P)
·P 1P)) = (((𝐴 +P
1P) ·P 𝐵) +P
(𝐴
+P 1P))) |
18 | | mulcomprg 7483 |
. . . . . . . . 9
⊢ (((𝐴 +P
1P) ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P
1P) ·P 𝐵) = (𝐵 ·P (𝐴 +P
1P))) |
19 | 5, 6, 18 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 +P
1P) ·P 𝐵) = (𝐵 ·P (𝐴 +P
1P))) |
20 | | distrprg 7491 |
. . . . . . . . 9
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ P
∧ 1P ∈ P) → (𝐵
·P (𝐴 +P
1P)) = ((𝐵 ·P 𝐴) +P
(𝐵
·P
1P))) |
21 | 6, 1, 3, 20 | syl3anc 1220 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ·P (𝐴 +P
1P)) = ((𝐵 ·P 𝐴) +P
(𝐵
·P
1P))) |
22 | | mulcomprg 7483 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ P)
→ (𝐵
·P 𝐴) = (𝐴 ·P 𝐵)) |
23 | 6, 1, 22 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ·P 𝐴) = (𝐴 ·P 𝐵)) |
24 | | recidpirqlemcalc.rec |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ·P 𝐵) =
1P) |
25 | 23, 24 | eqtrd 2190 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ·P 𝐴) =
1P) |
26 | | 1idpr 7495 |
. . . . . . . . . 10
⊢ (𝐵 ∈ P →
(𝐵
·P 1P) = 𝐵) |
27 | 6, 26 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ·P
1P) = 𝐵) |
28 | 25, 27 | oveq12d 5836 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 ·P 𝐴) +P
(𝐵
·P 1P)) =
(1P +P 𝐵)) |
29 | 19, 21, 28 | 3eqtrd 2194 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 +P
1P) ·P 𝐵) = (1P
+P 𝐵)) |
30 | 29 | oveq1d 5833 |
. . . . . 6
⊢ (𝜑 → (((𝐴 +P
1P) ·P 𝐵) +P
(𝐴
+P 1P)) =
((1P +P 𝐵) +P (𝐴 +P
1P))) |
31 | 14, 17, 30 | 3eqtrd 2194 |
. . . . 5
⊢ (𝜑 → ((𝐴 +P
1P) ·P (𝐵 +P
1P)) = ((1P
+P 𝐵) +P (𝐴 +P
1P))) |
32 | | 1idpr 7495 |
. . . . . 6
⊢
(1P ∈ P →
(1P ·P
1P) = 1P) |
33 | 2, 32 | mp1i 10 |
. . . . 5
⊢ (𝜑 →
(1P ·P
1P) = 1P) |
34 | 31, 33 | oveq12d 5836 |
. . . 4
⊢ (𝜑 → (((𝐴 +P
1P) ·P (𝐵 +P
1P)) +P
(1P ·P
1P)) = (((1P
+P 𝐵) +P (𝐴 +P
1P)) +P
1P)) |
35 | | addcomprg 7481 |
. . . . . . . 8
⊢
((1P ∈ P ∧ 𝐵 ∈ P) →
(1P +P 𝐵) = (𝐵 +P
1P)) |
36 | 3, 6, 35 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 →
(1P +P 𝐵) = (𝐵 +P
1P)) |
37 | 36 | oveq1d 5833 |
. . . . . 6
⊢ (𝜑 →
((1P +P 𝐵) +P (𝐴 +P
1P)) = ((𝐵 +P
1P) +P (𝐴 +P
1P))) |
38 | | addcomprg 7481 |
. . . . . . 7
⊢ (((𝐵 +P
1P) ∈ P ∧ (𝐴 +P
1P) ∈ P) → ((𝐵 +P
1P) +P (𝐴 +P
1P)) = ((𝐴 +P
1P) +P (𝐵 +P
1P))) |
39 | 8, 5, 38 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → ((𝐵 +P
1P) +P (𝐴 +P
1P)) = ((𝐴 +P
1P) +P (𝐵 +P
1P))) |
40 | 37, 39 | eqtrd 2190 |
. . . . 5
⊢ (𝜑 →
((1P +P 𝐵) +P (𝐴 +P
1P)) = ((𝐴 +P
1P) +P (𝐵 +P
1P))) |
41 | 40 | oveq1d 5833 |
. . . 4
⊢ (𝜑 →
(((1P +P 𝐵) +P (𝐴 +P
1P)) +P
1P) = (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P)) |
42 | 34, 41 | eqtrd 2190 |
. . 3
⊢ (𝜑 → (((𝐴 +P
1P) ·P (𝐵 +P
1P)) +P
(1P ·P
1P)) = (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P)) |
43 | 42 | oveq1d 5833 |
. 2
⊢ (𝜑 → ((((𝐴 +P
1P) ·P (𝐵 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P) +P
1P)) |
44 | | mulcomprg 7483 |
. . . . . 6
⊢
((1P ∈ P ∧ (𝐵 +P
1P) ∈ P) →
(1P ·P (𝐵 +P
1P)) = ((𝐵 +P
1P) ·P
1P)) |
45 | 3, 8, 44 | syl2anc 409 |
. . . . 5
⊢ (𝜑 →
(1P ·P (𝐵 +P
1P)) = ((𝐵 +P
1P) ·P
1P)) |
46 | | 1idpr 7495 |
. . . . . 6
⊢ ((𝐵 +P
1P) ∈ P → ((𝐵 +P
1P) ·P
1P) = (𝐵 +P
1P)) |
47 | 8, 46 | syl 14 |
. . . . 5
⊢ (𝜑 → ((𝐵 +P
1P) ·P
1P) = (𝐵 +P
1P)) |
48 | 45, 47 | eqtrd 2190 |
. . . 4
⊢ (𝜑 →
(1P ·P (𝐵 +P
1P)) = (𝐵 +P
1P)) |
49 | 16, 48 | oveq12d 5836 |
. . 3
⊢ (𝜑 → (((𝐴 +P
1P) ·P
1P) +P
(1P ·P (𝐵 +P
1P))) = ((𝐴 +P
1P) +P (𝐵 +P
1P))) |
50 | 49 | oveq1d 5833 |
. 2
⊢ (𝜑 → ((((𝐴 +P
1P) ·P
1P) +P
(1P ·P (𝐵 +P
1P))) +P
(1P +P
1P)) = (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
(1P +P
1P))) |
51 | 12, 43, 50 | 3eqtr4d 2200 |
1
⊢ (𝜑 → ((((𝐴 +P
1P) ·P (𝐵 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((𝐴 +P
1P) ·P
1P) +P
(1P ·P (𝐵 +P
1P))) +P
(1P +P
1P))) |