ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpirqlemcalc GIF version

Theorem recidpirqlemcalc 7798
Description: Lemma for recidpirq 7799. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
Hypotheses
Ref Expression
recidpirqlemcalc.a (𝜑𝐴P)
recidpirqlemcalc.b (𝜑𝐵P)
recidpirqlemcalc.rec (𝜑 → (𝐴 ·P 𝐵) = 1P)
Assertion
Ref Expression
recidpirqlemcalc (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)))

Proof of Theorem recidpirqlemcalc
StepHypRef Expression
1 recidpirqlemcalc.a . . . . 5 (𝜑𝐴P)
2 1pr 7495 . . . . . 6 1PP
32a1i 9 . . . . 5 (𝜑 → 1PP)
4 addclpr 7478 . . . . 5 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) ∈ P)
51, 3, 4syl2anc 409 . . . 4 (𝜑 → (𝐴 +P 1P) ∈ P)
6 recidpirqlemcalc.b . . . . 5 (𝜑𝐵P)
7 addclpr 7478 . . . . 5 ((𝐵P ∧ 1PP) → (𝐵 +P 1P) ∈ P)
86, 3, 7syl2anc 409 . . . 4 (𝜑 → (𝐵 +P 1P) ∈ P)
9 addclpr 7478 . . . 4 (((𝐴 +P 1P) ∈ P ∧ (𝐵 +P 1P) ∈ P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
105, 8, 9syl2anc 409 . . 3 (𝜑 → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
11 addassprg 7520 . . 3 ((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ 1PP ∧ 1PP) → ((((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) +P 1P) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P (1P +P 1P)))
1210, 3, 3, 11syl3anc 1228 . 2 (𝜑 → ((((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) +P 1P) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P (1P +P 1P)))
13 distrprg 7529 . . . . . . 7 (((𝐴 +P 1P) ∈ P𝐵P ∧ 1PP) → ((𝐴 +P 1P) ·P (𝐵 +P 1P)) = (((𝐴 +P 1P) ·P 𝐵) +P ((𝐴 +P 1P) ·P 1P)))
145, 6, 3, 13syl3anc 1228 . . . . . 6 (𝜑 → ((𝐴 +P 1P) ·P (𝐵 +P 1P)) = (((𝐴 +P 1P) ·P 𝐵) +P ((𝐴 +P 1P) ·P 1P)))
15 1idpr 7533 . . . . . . . 8 ((𝐴 +P 1P) ∈ P → ((𝐴 +P 1P) ·P 1P) = (𝐴 +P 1P))
165, 15syl 14 . . . . . . 7 (𝜑 → ((𝐴 +P 1P) ·P 1P) = (𝐴 +P 1P))
1716oveq2d 5858 . . . . . 6 (𝜑 → (((𝐴 +P 1P) ·P 𝐵) +P ((𝐴 +P 1P) ·P 1P)) = (((𝐴 +P 1P) ·P 𝐵) +P (𝐴 +P 1P)))
18 mulcomprg 7521 . . . . . . . . 9 (((𝐴 +P 1P) ∈ P𝐵P) → ((𝐴 +P 1P) ·P 𝐵) = (𝐵 ·P (𝐴 +P 1P)))
195, 6, 18syl2anc 409 . . . . . . . 8 (𝜑 → ((𝐴 +P 1P) ·P 𝐵) = (𝐵 ·P (𝐴 +P 1P)))
20 distrprg 7529 . . . . . . . . 9 ((𝐵P𝐴P ∧ 1PP) → (𝐵 ·P (𝐴 +P 1P)) = ((𝐵 ·P 𝐴) +P (𝐵 ·P 1P)))
216, 1, 3, 20syl3anc 1228 . . . . . . . 8 (𝜑 → (𝐵 ·P (𝐴 +P 1P)) = ((𝐵 ·P 𝐴) +P (𝐵 ·P 1P)))
22 mulcomprg 7521 . . . . . . . . . . 11 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = (𝐴 ·P 𝐵))
236, 1, 22syl2anc 409 . . . . . . . . . 10 (𝜑 → (𝐵 ·P 𝐴) = (𝐴 ·P 𝐵))
24 recidpirqlemcalc.rec . . . . . . . . . 10 (𝜑 → (𝐴 ·P 𝐵) = 1P)
2523, 24eqtrd 2198 . . . . . . . . 9 (𝜑 → (𝐵 ·P 𝐴) = 1P)
26 1idpr 7533 . . . . . . . . . 10 (𝐵P → (𝐵 ·P 1P) = 𝐵)
276, 26syl 14 . . . . . . . . 9 (𝜑 → (𝐵 ·P 1P) = 𝐵)
2825, 27oveq12d 5860 . . . . . . . 8 (𝜑 → ((𝐵 ·P 𝐴) +P (𝐵 ·P 1P)) = (1P +P 𝐵))
2919, 21, 283eqtrd 2202 . . . . . . 7 (𝜑 → ((𝐴 +P 1P) ·P 𝐵) = (1P +P 𝐵))
3029oveq1d 5857 . . . . . 6 (𝜑 → (((𝐴 +P 1P) ·P 𝐵) +P (𝐴 +P 1P)) = ((1P +P 𝐵) +P (𝐴 +P 1P)))
3114, 17, 303eqtrd 2202 . . . . 5 (𝜑 → ((𝐴 +P 1P) ·P (𝐵 +P 1P)) = ((1P +P 𝐵) +P (𝐴 +P 1P)))
32 1idpr 7533 . . . . . 6 (1PP → (1P ·P 1P) = 1P)
332, 32mp1i 10 . . . . 5 (𝜑 → (1P ·P 1P) = 1P)
3431, 33oveq12d 5860 . . . 4 (𝜑 → (((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) = (((1P +P 𝐵) +P (𝐴 +P 1P)) +P 1P))
35 addcomprg 7519 . . . . . . . 8 ((1PP𝐵P) → (1P +P 𝐵) = (𝐵 +P 1P))
363, 6, 35syl2anc 409 . . . . . . 7 (𝜑 → (1P +P 𝐵) = (𝐵 +P 1P))
3736oveq1d 5857 . . . . . 6 (𝜑 → ((1P +P 𝐵) +P (𝐴 +P 1P)) = ((𝐵 +P 1P) +P (𝐴 +P 1P)))
38 addcomprg 7519 . . . . . . 7 (((𝐵 +P 1P) ∈ P ∧ (𝐴 +P 1P) ∈ P) → ((𝐵 +P 1P) +P (𝐴 +P 1P)) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
398, 5, 38syl2anc 409 . . . . . 6 (𝜑 → ((𝐵 +P 1P) +P (𝐴 +P 1P)) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
4037, 39eqtrd 2198 . . . . 5 (𝜑 → ((1P +P 𝐵) +P (𝐴 +P 1P)) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
4140oveq1d 5857 . . . 4 (𝜑 → (((1P +P 𝐵) +P (𝐴 +P 1P)) +P 1P) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P))
4234, 41eqtrd 2198 . . 3 (𝜑 → (((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P))
4342oveq1d 5857 . 2 (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) +P 1P))
44 mulcomprg 7521 . . . . . 6 ((1PP ∧ (𝐵 +P 1P) ∈ P) → (1P ·P (𝐵 +P 1P)) = ((𝐵 +P 1P) ·P 1P))
453, 8, 44syl2anc 409 . . . . 5 (𝜑 → (1P ·P (𝐵 +P 1P)) = ((𝐵 +P 1P) ·P 1P))
46 1idpr 7533 . . . . . 6 ((𝐵 +P 1P) ∈ P → ((𝐵 +P 1P) ·P 1P) = (𝐵 +P 1P))
478, 46syl 14 . . . . 5 (𝜑 → ((𝐵 +P 1P) ·P 1P) = (𝐵 +P 1P))
4845, 47eqtrd 2198 . . . 4 (𝜑 → (1P ·P (𝐵 +P 1P)) = (𝐵 +P 1P))
4916, 48oveq12d 5860 . . 3 (𝜑 → (((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
5049oveq1d 5857 . 2 (𝜑 → ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P (1P +P 1P)))
5112, 43, 503eqtr4d 2208 1 (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  (class class class)co 5842  Pcnp 7232  1Pc1p 7233   +P cpp 7234   ·P cmp 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410
This theorem is referenced by:  recidpirq  7799
  Copyright terms: Public domain W3C validator