ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpirqlemcalc GIF version

Theorem recidpirqlemcalc 7917
Description: Lemma for recidpirq 7918. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
Hypotheses
Ref Expression
recidpirqlemcalc.a (𝜑𝐴P)
recidpirqlemcalc.b (𝜑𝐵P)
recidpirqlemcalc.rec (𝜑 → (𝐴 ·P 𝐵) = 1P)
Assertion
Ref Expression
recidpirqlemcalc (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)))

Proof of Theorem recidpirqlemcalc
StepHypRef Expression
1 recidpirqlemcalc.a . . . . 5 (𝜑𝐴P)
2 1pr 7614 . . . . . 6 1PP
32a1i 9 . . . . 5 (𝜑 → 1PP)
4 addclpr 7597 . . . . 5 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) ∈ P)
51, 3, 4syl2anc 411 . . . 4 (𝜑 → (𝐴 +P 1P) ∈ P)
6 recidpirqlemcalc.b . . . . 5 (𝜑𝐵P)
7 addclpr 7597 . . . . 5 ((𝐵P ∧ 1PP) → (𝐵 +P 1P) ∈ P)
86, 3, 7syl2anc 411 . . . 4 (𝜑 → (𝐵 +P 1P) ∈ P)
9 addclpr 7597 . . . 4 (((𝐴 +P 1P) ∈ P ∧ (𝐵 +P 1P) ∈ P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
105, 8, 9syl2anc 411 . . 3 (𝜑 → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
11 addassprg 7639 . . 3 ((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ 1PP ∧ 1PP) → ((((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) +P 1P) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P (1P +P 1P)))
1210, 3, 3, 11syl3anc 1249 . 2 (𝜑 → ((((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) +P 1P) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P (1P +P 1P)))
13 distrprg 7648 . . . . . . 7 (((𝐴 +P 1P) ∈ P𝐵P ∧ 1PP) → ((𝐴 +P 1P) ·P (𝐵 +P 1P)) = (((𝐴 +P 1P) ·P 𝐵) +P ((𝐴 +P 1P) ·P 1P)))
145, 6, 3, 13syl3anc 1249 . . . . . 6 (𝜑 → ((𝐴 +P 1P) ·P (𝐵 +P 1P)) = (((𝐴 +P 1P) ·P 𝐵) +P ((𝐴 +P 1P) ·P 1P)))
15 1idpr 7652 . . . . . . . 8 ((𝐴 +P 1P) ∈ P → ((𝐴 +P 1P) ·P 1P) = (𝐴 +P 1P))
165, 15syl 14 . . . . . . 7 (𝜑 → ((𝐴 +P 1P) ·P 1P) = (𝐴 +P 1P))
1716oveq2d 5934 . . . . . 6 (𝜑 → (((𝐴 +P 1P) ·P 𝐵) +P ((𝐴 +P 1P) ·P 1P)) = (((𝐴 +P 1P) ·P 𝐵) +P (𝐴 +P 1P)))
18 mulcomprg 7640 . . . . . . . . 9 (((𝐴 +P 1P) ∈ P𝐵P) → ((𝐴 +P 1P) ·P 𝐵) = (𝐵 ·P (𝐴 +P 1P)))
195, 6, 18syl2anc 411 . . . . . . . 8 (𝜑 → ((𝐴 +P 1P) ·P 𝐵) = (𝐵 ·P (𝐴 +P 1P)))
20 distrprg 7648 . . . . . . . . 9 ((𝐵P𝐴P ∧ 1PP) → (𝐵 ·P (𝐴 +P 1P)) = ((𝐵 ·P 𝐴) +P (𝐵 ·P 1P)))
216, 1, 3, 20syl3anc 1249 . . . . . . . 8 (𝜑 → (𝐵 ·P (𝐴 +P 1P)) = ((𝐵 ·P 𝐴) +P (𝐵 ·P 1P)))
22 mulcomprg 7640 . . . . . . . . . . 11 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = (𝐴 ·P 𝐵))
236, 1, 22syl2anc 411 . . . . . . . . . 10 (𝜑 → (𝐵 ·P 𝐴) = (𝐴 ·P 𝐵))
24 recidpirqlemcalc.rec . . . . . . . . . 10 (𝜑 → (𝐴 ·P 𝐵) = 1P)
2523, 24eqtrd 2226 . . . . . . . . 9 (𝜑 → (𝐵 ·P 𝐴) = 1P)
26 1idpr 7652 . . . . . . . . . 10 (𝐵P → (𝐵 ·P 1P) = 𝐵)
276, 26syl 14 . . . . . . . . 9 (𝜑 → (𝐵 ·P 1P) = 𝐵)
2825, 27oveq12d 5936 . . . . . . . 8 (𝜑 → ((𝐵 ·P 𝐴) +P (𝐵 ·P 1P)) = (1P +P 𝐵))
2919, 21, 283eqtrd 2230 . . . . . . 7 (𝜑 → ((𝐴 +P 1P) ·P 𝐵) = (1P +P 𝐵))
3029oveq1d 5933 . . . . . 6 (𝜑 → (((𝐴 +P 1P) ·P 𝐵) +P (𝐴 +P 1P)) = ((1P +P 𝐵) +P (𝐴 +P 1P)))
3114, 17, 303eqtrd 2230 . . . . 5 (𝜑 → ((𝐴 +P 1P) ·P (𝐵 +P 1P)) = ((1P +P 𝐵) +P (𝐴 +P 1P)))
32 1idpr 7652 . . . . . 6 (1PP → (1P ·P 1P) = 1P)
332, 32mp1i 10 . . . . 5 (𝜑 → (1P ·P 1P) = 1P)
3431, 33oveq12d 5936 . . . 4 (𝜑 → (((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) = (((1P +P 𝐵) +P (𝐴 +P 1P)) +P 1P))
35 addcomprg 7638 . . . . . . . 8 ((1PP𝐵P) → (1P +P 𝐵) = (𝐵 +P 1P))
363, 6, 35syl2anc 411 . . . . . . 7 (𝜑 → (1P +P 𝐵) = (𝐵 +P 1P))
3736oveq1d 5933 . . . . . 6 (𝜑 → ((1P +P 𝐵) +P (𝐴 +P 1P)) = ((𝐵 +P 1P) +P (𝐴 +P 1P)))
38 addcomprg 7638 . . . . . . 7 (((𝐵 +P 1P) ∈ P ∧ (𝐴 +P 1P) ∈ P) → ((𝐵 +P 1P) +P (𝐴 +P 1P)) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
398, 5, 38syl2anc 411 . . . . . 6 (𝜑 → ((𝐵 +P 1P) +P (𝐴 +P 1P)) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
4037, 39eqtrd 2226 . . . . 5 (𝜑 → ((1P +P 𝐵) +P (𝐴 +P 1P)) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
4140oveq1d 5933 . . . 4 (𝜑 → (((1P +P 𝐵) +P (𝐴 +P 1P)) +P 1P) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P))
4234, 41eqtrd 2226 . . 3 (𝜑 → (((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P))
4342oveq1d 5933 . 2 (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) +P 1P))
44 mulcomprg 7640 . . . . . 6 ((1PP ∧ (𝐵 +P 1P) ∈ P) → (1P ·P (𝐵 +P 1P)) = ((𝐵 +P 1P) ·P 1P))
453, 8, 44syl2anc 411 . . . . 5 (𝜑 → (1P ·P (𝐵 +P 1P)) = ((𝐵 +P 1P) ·P 1P))
46 1idpr 7652 . . . . . 6 ((𝐵 +P 1P) ∈ P → ((𝐵 +P 1P) ·P 1P) = (𝐵 +P 1P))
478, 46syl 14 . . . . 5 (𝜑 → ((𝐵 +P 1P) ·P 1P) = (𝐵 +P 1P))
4845, 47eqtrd 2226 . . . 4 (𝜑 → (1P ·P (𝐵 +P 1P)) = (𝐵 +P 1P))
4916, 48oveq12d 5936 . . 3 (𝜑 → (((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
5049oveq1d 5933 . 2 (𝜑 → ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P (1P +P 1P)))
5112, 43, 503eqtr4d 2236 1 (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  (class class class)co 5918  Pcnp 7351  1Pc1p 7352   +P cpp 7353   ·P cmp 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-imp 7529
This theorem is referenced by:  recidpirq  7918
  Copyright terms: Public domain W3C validator