Proof of Theorem recidpirqlemcalc
| Step | Hyp | Ref
| Expression |
| 1 | | recidpirqlemcalc.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ P) |
| 2 | | 1pr 7621 |
. . . . . 6
⊢
1P ∈ P |
| 3 | 2 | a1i 9 |
. . . . 5
⊢ (𝜑 →
1P ∈ P) |
| 4 | | addclpr 7604 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
1P ∈ P) → (𝐴 +P
1P) ∈ P) |
| 5 | 1, 3, 4 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝐴 +P
1P) ∈ P) |
| 6 | | recidpirqlemcalc.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ P) |
| 7 | | addclpr 7604 |
. . . . 5
⊢ ((𝐵 ∈ P ∧
1P ∈ P) → (𝐵 +P
1P) ∈ P) |
| 8 | 6, 3, 7 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝐵 +P
1P) ∈ P) |
| 9 | | addclpr 7604 |
. . . 4
⊢ (((𝐴 +P
1P) ∈ P ∧ (𝐵 +P
1P) ∈ P) → ((𝐴 +P
1P) +P (𝐵 +P
1P)) ∈ P) |
| 10 | 5, 8, 9 | syl2anc 411 |
. . 3
⊢ (𝜑 → ((𝐴 +P
1P) +P (𝐵 +P
1P)) ∈ P) |
| 11 | | addassprg 7646 |
. . 3
⊢ ((((𝐴 +P
1P) +P (𝐵 +P
1P)) ∈ P ∧
1P ∈ P ∧
1P ∈ P) → ((((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P) +P
1P) = (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
(1P +P
1P))) |
| 12 | 10, 3, 3, 11 | syl3anc 1249 |
. 2
⊢ (𝜑 → ((((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P) +P
1P) = (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
(1P +P
1P))) |
| 13 | | distrprg 7655 |
. . . . . . 7
⊢ (((𝐴 +P
1P) ∈ P ∧ 𝐵 ∈ P ∧
1P ∈ P) → ((𝐴 +P
1P) ·P (𝐵 +P
1P)) = (((𝐴 +P
1P) ·P 𝐵) +P
((𝐴
+P 1P)
·P
1P))) |
| 14 | 5, 6, 3, 13 | syl3anc 1249 |
. . . . . 6
⊢ (𝜑 → ((𝐴 +P
1P) ·P (𝐵 +P
1P)) = (((𝐴 +P
1P) ·P 𝐵) +P
((𝐴
+P 1P)
·P
1P))) |
| 15 | | 1idpr 7659 |
. . . . . . . 8
⊢ ((𝐴 +P
1P) ∈ P → ((𝐴 +P
1P) ·P
1P) = (𝐴 +P
1P)) |
| 16 | 5, 15 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 +P
1P) ·P
1P) = (𝐴 +P
1P)) |
| 17 | 16 | oveq2d 5938 |
. . . . . 6
⊢ (𝜑 → (((𝐴 +P
1P) ·P 𝐵) +P
((𝐴
+P 1P)
·P 1P)) = (((𝐴 +P
1P) ·P 𝐵) +P
(𝐴
+P 1P))) |
| 18 | | mulcomprg 7647 |
. . . . . . . . 9
⊢ (((𝐴 +P
1P) ∈ P ∧ 𝐵 ∈ P) → ((𝐴 +P
1P) ·P 𝐵) = (𝐵 ·P (𝐴 +P
1P))) |
| 19 | 5, 6, 18 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 +P
1P) ·P 𝐵) = (𝐵 ·P (𝐴 +P
1P))) |
| 20 | | distrprg 7655 |
. . . . . . . . 9
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ P
∧ 1P ∈ P) → (𝐵
·P (𝐴 +P
1P)) = ((𝐵 ·P 𝐴) +P
(𝐵
·P
1P))) |
| 21 | 6, 1, 3, 20 | syl3anc 1249 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ·P (𝐴 +P
1P)) = ((𝐵 ·P 𝐴) +P
(𝐵
·P
1P))) |
| 22 | | mulcomprg 7647 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ P)
→ (𝐵
·P 𝐴) = (𝐴 ·P 𝐵)) |
| 23 | 6, 1, 22 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ·P 𝐴) = (𝐴 ·P 𝐵)) |
| 24 | | recidpirqlemcalc.rec |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ·P 𝐵) =
1P) |
| 25 | 23, 24 | eqtrd 2229 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ·P 𝐴) =
1P) |
| 26 | | 1idpr 7659 |
. . . . . . . . . 10
⊢ (𝐵 ∈ P →
(𝐵
·P 1P) = 𝐵) |
| 27 | 6, 26 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ·P
1P) = 𝐵) |
| 28 | 25, 27 | oveq12d 5940 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 ·P 𝐴) +P
(𝐵
·P 1P)) =
(1P +P 𝐵)) |
| 29 | 19, 21, 28 | 3eqtrd 2233 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 +P
1P) ·P 𝐵) = (1P
+P 𝐵)) |
| 30 | 29 | oveq1d 5937 |
. . . . . 6
⊢ (𝜑 → (((𝐴 +P
1P) ·P 𝐵) +P
(𝐴
+P 1P)) =
((1P +P 𝐵) +P (𝐴 +P
1P))) |
| 31 | 14, 17, 30 | 3eqtrd 2233 |
. . . . 5
⊢ (𝜑 → ((𝐴 +P
1P) ·P (𝐵 +P
1P)) = ((1P
+P 𝐵) +P (𝐴 +P
1P))) |
| 32 | | 1idpr 7659 |
. . . . . 6
⊢
(1P ∈ P →
(1P ·P
1P) = 1P) |
| 33 | 2, 32 | mp1i 10 |
. . . . 5
⊢ (𝜑 →
(1P ·P
1P) = 1P) |
| 34 | 31, 33 | oveq12d 5940 |
. . . 4
⊢ (𝜑 → (((𝐴 +P
1P) ·P (𝐵 +P
1P)) +P
(1P ·P
1P)) = (((1P
+P 𝐵) +P (𝐴 +P
1P)) +P
1P)) |
| 35 | | addcomprg 7645 |
. . . . . . . 8
⊢
((1P ∈ P ∧ 𝐵 ∈ P) →
(1P +P 𝐵) = (𝐵 +P
1P)) |
| 36 | 3, 6, 35 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 →
(1P +P 𝐵) = (𝐵 +P
1P)) |
| 37 | 36 | oveq1d 5937 |
. . . . . 6
⊢ (𝜑 →
((1P +P 𝐵) +P (𝐴 +P
1P)) = ((𝐵 +P
1P) +P (𝐴 +P
1P))) |
| 38 | | addcomprg 7645 |
. . . . . . 7
⊢ (((𝐵 +P
1P) ∈ P ∧ (𝐴 +P
1P) ∈ P) → ((𝐵 +P
1P) +P (𝐴 +P
1P)) = ((𝐴 +P
1P) +P (𝐵 +P
1P))) |
| 39 | 8, 5, 38 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ((𝐵 +P
1P) +P (𝐴 +P
1P)) = ((𝐴 +P
1P) +P (𝐵 +P
1P))) |
| 40 | 37, 39 | eqtrd 2229 |
. . . . 5
⊢ (𝜑 →
((1P +P 𝐵) +P (𝐴 +P
1P)) = ((𝐴 +P
1P) +P (𝐵 +P
1P))) |
| 41 | 40 | oveq1d 5937 |
. . . 4
⊢ (𝜑 →
(((1P +P 𝐵) +P (𝐴 +P
1P)) +P
1P) = (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P)) |
| 42 | 34, 41 | eqtrd 2229 |
. . 3
⊢ (𝜑 → (((𝐴 +P
1P) ·P (𝐵 +P
1P)) +P
(1P ·P
1P)) = (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P)) |
| 43 | 42 | oveq1d 5937 |
. 2
⊢ (𝜑 → ((((𝐴 +P
1P) ·P (𝐵 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
1P) +P
1P)) |
| 44 | | mulcomprg 7647 |
. . . . . 6
⊢
((1P ∈ P ∧ (𝐵 +P
1P) ∈ P) →
(1P ·P (𝐵 +P
1P)) = ((𝐵 +P
1P) ·P
1P)) |
| 45 | 3, 8, 44 | syl2anc 411 |
. . . . 5
⊢ (𝜑 →
(1P ·P (𝐵 +P
1P)) = ((𝐵 +P
1P) ·P
1P)) |
| 46 | | 1idpr 7659 |
. . . . . 6
⊢ ((𝐵 +P
1P) ∈ P → ((𝐵 +P
1P) ·P
1P) = (𝐵 +P
1P)) |
| 47 | 8, 46 | syl 14 |
. . . . 5
⊢ (𝜑 → ((𝐵 +P
1P) ·P
1P) = (𝐵 +P
1P)) |
| 48 | 45, 47 | eqtrd 2229 |
. . . 4
⊢ (𝜑 →
(1P ·P (𝐵 +P
1P)) = (𝐵 +P
1P)) |
| 49 | 16, 48 | oveq12d 5940 |
. . 3
⊢ (𝜑 → (((𝐴 +P
1P) ·P
1P) +P
(1P ·P (𝐵 +P
1P))) = ((𝐴 +P
1P) +P (𝐵 +P
1P))) |
| 50 | 49 | oveq1d 5937 |
. 2
⊢ (𝜑 → ((((𝐴 +P
1P) ·P
1P) +P
(1P ·P (𝐵 +P
1P))) +P
(1P +P
1P)) = (((𝐴 +P
1P) +P (𝐵 +P
1P)) +P
(1P +P
1P))) |
| 51 | 12, 43, 50 | 3eqtr4d 2239 |
1
⊢ (𝜑 → ((((𝐴 +P
1P) ·P (𝐵 +P
1P)) +P
(1P ·P
1P)) +P
1P) = ((((𝐴 +P
1P) ·P
1P) +P
(1P ·P (𝐵 +P
1P))) +P
(1P +P
1P))) |