ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidpirqlemcalc GIF version

Theorem recidpirqlemcalc 7544
Description: Lemma for recidpirq 7545. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
Hypotheses
Ref Expression
recidpirqlemcalc.a (𝜑𝐴P)
recidpirqlemcalc.b (𝜑𝐵P)
recidpirqlemcalc.rec (𝜑 → (𝐴 ·P 𝐵) = 1P)
Assertion
Ref Expression
recidpirqlemcalc (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)))

Proof of Theorem recidpirqlemcalc
StepHypRef Expression
1 recidpirqlemcalc.a . . . . 5 (𝜑𝐴P)
2 1pr 7263 . . . . . 6 1PP
32a1i 9 . . . . 5 (𝜑 → 1PP)
4 addclpr 7246 . . . . 5 ((𝐴P ∧ 1PP) → (𝐴 +P 1P) ∈ P)
51, 3, 4syl2anc 406 . . . 4 (𝜑 → (𝐴 +P 1P) ∈ P)
6 recidpirqlemcalc.b . . . . 5 (𝜑𝐵P)
7 addclpr 7246 . . . . 5 ((𝐵P ∧ 1PP) → (𝐵 +P 1P) ∈ P)
86, 3, 7syl2anc 406 . . . 4 (𝜑 → (𝐵 +P 1P) ∈ P)
9 addclpr 7246 . . . 4 (((𝐴 +P 1P) ∈ P ∧ (𝐵 +P 1P) ∈ P) → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
105, 8, 9syl2anc 406 . . 3 (𝜑 → ((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P)
11 addassprg 7288 . . 3 ((((𝐴 +P 1P) +P (𝐵 +P 1P)) ∈ P ∧ 1PP ∧ 1PP) → ((((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) +P 1P) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P (1P +P 1P)))
1210, 3, 3, 11syl3anc 1184 . 2 (𝜑 → ((((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) +P 1P) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P (1P +P 1P)))
13 distrprg 7297 . . . . . . 7 (((𝐴 +P 1P) ∈ P𝐵P ∧ 1PP) → ((𝐴 +P 1P) ·P (𝐵 +P 1P)) = (((𝐴 +P 1P) ·P 𝐵) +P ((𝐴 +P 1P) ·P 1P)))
145, 6, 3, 13syl3anc 1184 . . . . . 6 (𝜑 → ((𝐴 +P 1P) ·P (𝐵 +P 1P)) = (((𝐴 +P 1P) ·P 𝐵) +P ((𝐴 +P 1P) ·P 1P)))
15 1idpr 7301 . . . . . . . 8 ((𝐴 +P 1P) ∈ P → ((𝐴 +P 1P) ·P 1P) = (𝐴 +P 1P))
165, 15syl 14 . . . . . . 7 (𝜑 → ((𝐴 +P 1P) ·P 1P) = (𝐴 +P 1P))
1716oveq2d 5722 . . . . . 6 (𝜑 → (((𝐴 +P 1P) ·P 𝐵) +P ((𝐴 +P 1P) ·P 1P)) = (((𝐴 +P 1P) ·P 𝐵) +P (𝐴 +P 1P)))
18 mulcomprg 7289 . . . . . . . . 9 (((𝐴 +P 1P) ∈ P𝐵P) → ((𝐴 +P 1P) ·P 𝐵) = (𝐵 ·P (𝐴 +P 1P)))
195, 6, 18syl2anc 406 . . . . . . . 8 (𝜑 → ((𝐴 +P 1P) ·P 𝐵) = (𝐵 ·P (𝐴 +P 1P)))
20 distrprg 7297 . . . . . . . . 9 ((𝐵P𝐴P ∧ 1PP) → (𝐵 ·P (𝐴 +P 1P)) = ((𝐵 ·P 𝐴) +P (𝐵 ·P 1P)))
216, 1, 3, 20syl3anc 1184 . . . . . . . 8 (𝜑 → (𝐵 ·P (𝐴 +P 1P)) = ((𝐵 ·P 𝐴) +P (𝐵 ·P 1P)))
22 mulcomprg 7289 . . . . . . . . . . 11 ((𝐵P𝐴P) → (𝐵 ·P 𝐴) = (𝐴 ·P 𝐵))
236, 1, 22syl2anc 406 . . . . . . . . . 10 (𝜑 → (𝐵 ·P 𝐴) = (𝐴 ·P 𝐵))
24 recidpirqlemcalc.rec . . . . . . . . . 10 (𝜑 → (𝐴 ·P 𝐵) = 1P)
2523, 24eqtrd 2132 . . . . . . . . 9 (𝜑 → (𝐵 ·P 𝐴) = 1P)
26 1idpr 7301 . . . . . . . . . 10 (𝐵P → (𝐵 ·P 1P) = 𝐵)
276, 26syl 14 . . . . . . . . 9 (𝜑 → (𝐵 ·P 1P) = 𝐵)
2825, 27oveq12d 5724 . . . . . . . 8 (𝜑 → ((𝐵 ·P 𝐴) +P (𝐵 ·P 1P)) = (1P +P 𝐵))
2919, 21, 283eqtrd 2136 . . . . . . 7 (𝜑 → ((𝐴 +P 1P) ·P 𝐵) = (1P +P 𝐵))
3029oveq1d 5721 . . . . . 6 (𝜑 → (((𝐴 +P 1P) ·P 𝐵) +P (𝐴 +P 1P)) = ((1P +P 𝐵) +P (𝐴 +P 1P)))
3114, 17, 303eqtrd 2136 . . . . 5 (𝜑 → ((𝐴 +P 1P) ·P (𝐵 +P 1P)) = ((1P +P 𝐵) +P (𝐴 +P 1P)))
32 1idpr 7301 . . . . . 6 (1PP → (1P ·P 1P) = 1P)
332, 32mp1i 10 . . . . 5 (𝜑 → (1P ·P 1P) = 1P)
3431, 33oveq12d 5724 . . . 4 (𝜑 → (((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) = (((1P +P 𝐵) +P (𝐴 +P 1P)) +P 1P))
35 addcomprg 7287 . . . . . . . 8 ((1PP𝐵P) → (1P +P 𝐵) = (𝐵 +P 1P))
363, 6, 35syl2anc 406 . . . . . . 7 (𝜑 → (1P +P 𝐵) = (𝐵 +P 1P))
3736oveq1d 5721 . . . . . 6 (𝜑 → ((1P +P 𝐵) +P (𝐴 +P 1P)) = ((𝐵 +P 1P) +P (𝐴 +P 1P)))
38 addcomprg 7287 . . . . . . 7 (((𝐵 +P 1P) ∈ P ∧ (𝐴 +P 1P) ∈ P) → ((𝐵 +P 1P) +P (𝐴 +P 1P)) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
398, 5, 38syl2anc 406 . . . . . 6 (𝜑 → ((𝐵 +P 1P) +P (𝐴 +P 1P)) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
4037, 39eqtrd 2132 . . . . 5 (𝜑 → ((1P +P 𝐵) +P (𝐴 +P 1P)) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
4140oveq1d 5721 . . . 4 (𝜑 → (((1P +P 𝐵) +P (𝐴 +P 1P)) +P 1P) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P))
4234, 41eqtrd 2132 . . 3 (𝜑 → (((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P))
4342oveq1d 5721 . 2 (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) +P (𝐵 +P 1P)) +P 1P) +P 1P))
44 mulcomprg 7289 . . . . . 6 ((1PP ∧ (𝐵 +P 1P) ∈ P) → (1P ·P (𝐵 +P 1P)) = ((𝐵 +P 1P) ·P 1P))
453, 8, 44syl2anc 406 . . . . 5 (𝜑 → (1P ·P (𝐵 +P 1P)) = ((𝐵 +P 1P) ·P 1P))
46 1idpr 7301 . . . . . 6 ((𝐵 +P 1P) ∈ P → ((𝐵 +P 1P) ·P 1P) = (𝐵 +P 1P))
478, 46syl 14 . . . . 5 (𝜑 → ((𝐵 +P 1P) ·P 1P) = (𝐵 +P 1P))
4845, 47eqtrd 2132 . . . 4 (𝜑 → (1P ·P (𝐵 +P 1P)) = (𝐵 +P 1P))
4916, 48oveq12d 5724 . . 3 (𝜑 → (((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) = ((𝐴 +P 1P) +P (𝐵 +P 1P)))
5049oveq1d 5721 . 2 (𝜑 → ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)) = (((𝐴 +P 1P) +P (𝐵 +P 1P)) +P (1P +P 1P)))
5112, 43, 503eqtr4d 2142 1 (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299  wcel 1448  (class class class)co 5706  Pcnp 7000  1Pc1p 7001   +P cpp 7002   ·P cmp 7003
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-i1p 7176  df-iplp 7177  df-imp 7178
This theorem is referenced by:  recidpirq  7545
  Copyright terms: Public domain W3C validator