Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rngsubdir | GIF version |
Description: Ring multiplication distributes over subtraction. (subdir 8317 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringsubdi.b | ⊢ 𝐵 = (Base‘𝑅) |
ringsubdi.t | ⊢ · = (.r‘𝑅) |
ringsubdi.m | ⊢ − = (-g‘𝑅) |
ringsubdi.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringsubdi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringsubdi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringsubdi.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
rngsubdir | ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringsubdi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringsubdi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ringgrp 12977 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 1, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
5 | ringsubdi.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | ringsubdi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
7 | eqid 2175 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
8 | 6, 7 | grpinvcl 12781 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
9 | 4, 5, 8 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
10 | ringsubdi.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | eqid 2175 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
12 | ringsubdi.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
13 | 6, 11, 12 | ringdir 12995 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍))) |
14 | 1, 2, 9, 10, 13 | syl13anc 1240 | . . 3 ⊢ (𝜑 → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍))) |
15 | 6, 12, 7, 1, 5, 10 | ringmneg1 13022 | . . . 4 ⊢ (𝜑 → (((invg‘𝑅)‘𝑌) · 𝑍) = ((invg‘𝑅)‘(𝑌 · 𝑍))) |
16 | 15 | oveq2d 5881 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
17 | 14, 16 | eqtrd 2208 | . 2 ⊢ (𝜑 → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
18 | ringsubdi.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
19 | 6, 11, 7, 18 | grpsubval 12779 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
20 | 2, 5, 19 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
21 | 20 | oveq1d 5880 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍)) |
22 | 6, 12 | ringcl 12989 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
23 | 1, 2, 10, 22 | syl3anc 1238 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
24 | 6, 12 | ringcl 12989 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 · 𝑍) ∈ 𝐵) |
25 | 1, 5, 10, 24 | syl3anc 1238 | . . 3 ⊢ (𝜑 → (𝑌 · 𝑍) ∈ 𝐵) |
26 | 6, 11, 7, 18 | grpsubval 12779 | . . 3 ⊢ (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) − (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
27 | 23, 25, 26 | syl2anc 411 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑍) − (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
28 | 17, 21, 27 | 3eqtr4d 2218 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 Basecbs 12427 +gcplusg 12491 .rcmulr 12492 Grpcgrp 12737 invgcminusg 12738 -gcsg 12739 Ringcrg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12430 df-slot 12431 df-base 12433 df-sets 12434 df-plusg 12504 df-mulr 12505 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-grp 12740 df-minusg 12741 df-sbg 12742 df-mgp 12926 df-ur 12936 df-ring 12974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |