ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3sub Unicode version

Theorem ser3sub 10120
Description: The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
Hypotheses
Ref Expression
sersub.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
ser3sub.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
ser3sub.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
ser3sub.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  -  ( G `
 k ) ) )
Assertion
Ref Expression
ser3sub  |-  ( ph  ->  (  seq M (  +  ,  H ) `
 N )  =  ( (  seq M
(  +  ,  F
) `  N )  -  (  seq M (  +  ,  G ) `
 N ) ) )
Distinct variable groups:    k, F    k, G    k, H    k, M    k, N    ph, k

Proof of Theorem ser3sub
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 7617 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
21adantl 273 . 2  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
3 subcl 7832 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  e.  CC )
43adantl 273 . 2  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  -  y
)  e.  CC )
5 addsub4 7876 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( z  e.  CC  /\  w  e.  CC ) )  -> 
( ( x  +  y )  -  (
z  +  w ) )  =  ( ( x  -  z )  +  ( y  -  w ) ) )
65eqcomd 2105 . . 3  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( z  e.  CC  /\  w  e.  CC ) )  -> 
( ( x  -  z )  +  ( y  -  w ) )  =  ( ( x  +  y )  -  ( z  +  w ) ) )
76adantl 273 . 2  |-  ( (
ph  /\  ( (
x  e.  CC  /\  y  e.  CC )  /\  ( z  e.  CC  /\  w  e.  CC ) ) )  ->  (
( x  -  z
)  +  ( y  -  w ) )  =  ( ( x  +  y )  -  ( z  +  w
) ) )
8 sersub.1 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
9 ser3sub.2 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
10 ser3sub.3 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
11 ser3sub.4 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  -  ( G `
 k ) ) )
122, 4, 7, 8, 9, 10, 11seq3caopr2 10096 1  |-  ( ph  ->  (  seq M (  +  ,  H ) `
 N )  =  ( (  seq M
(  +  ,  F
) `  N )  -  (  seq M (  +  ,  G ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    e. wcel 1448   ` cfv 5059  (class class class)co 5706   CCcc 7498    + caddc 7503    - cmin 7804   ZZ>=cuz 9176    seqcseq 10059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-fz 9632  df-fzo 9761  df-seqfrec 10060
This theorem is referenced by:  ser3le  10132
  Copyright terms: Public domain W3C validator