ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3le Unicode version

Theorem ser3le 10682
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
ser3ge0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
ser3ge0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
ser3le.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
serle.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  <_  ( G `  k )
)
Assertion
Ref Expression
ser3le  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_ 
(  seq M (  +  ,  G ) `  N ) )
Distinct variable groups:    k, F    k, G    k, M    k, N    ph, k

Proof of Theorem ser3le
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 vex 2775 . . . . . 6  |-  k  e. 
_V
3 ser3le.3 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
4 ser3ge0.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
53, 4resubcld 8453 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( G `  k )  -  ( F `  k ) )  e.  RR )
6 fveq2 5576 . . . . . . . 8  |-  ( x  =  k  ->  ( G `  x )  =  ( G `  k ) )
7 fveq2 5576 . . . . . . . 8  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
86, 7oveq12d 5962 . . . . . . 7  |-  ( x  =  k  ->  (
( G `  x
)  -  ( F `
 x ) )  =  ( ( G `
 k )  -  ( F `  k ) ) )
9 eqid 2205 . . . . . . 7  |-  ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) )  =  ( x  e. 
_V  |->  ( ( G `
 x )  -  ( F `  x ) ) )
108, 9fvmptg 5655 . . . . . 6  |-  ( ( k  e.  _V  /\  ( ( G `  k )  -  ( F `  k )
)  e.  RR )  ->  ( ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) ) `
 k )  =  ( ( G `  k )  -  ( F `  k )
) )
112, 5, 10sylancr 414 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  =  ( ( G `
 k )  -  ( F `  k ) ) )
1211, 5eqeltrd 2282 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  e.  RR )
13 elfzuz 10143 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
14 serle.4 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  <_  ( G `  k )
)
1513, 14sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  <_  ( G `  k )
)
163, 4subge0d 8608 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 0  <_  ( ( G `
 k )  -  ( F `  k ) )  <->  ( F `  k )  <_  ( G `  k )
) )
1713, 16sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( 0  <_  ( ( G `
 k )  -  ( F `  k ) )  <->  ( F `  k )  <_  ( G `  k )
) )
1815, 17mpbird 167 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( ( G `  k
)  -  ( F `
 k ) ) )
1913, 11sylan2 286 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  =  ( ( G `
 k )  -  ( F `  k ) ) )
2018, 19breqtrrd 4072 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) `  k
) )
211, 12, 20ser3ge0 10681 . . 3  |-  ( ph  ->  0  <_  (  seq M (  +  , 
( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) ) `  N ) )
223recnd 8101 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
234recnd 8101 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
241, 22, 23, 11ser3sub 10668 . . 3  |-  ( ph  ->  (  seq M (  +  ,  ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) ) ) `  N )  =  ( (  seq M (  +  ,  G ) `  N
)  -  (  seq M (  +  ,  F ) `  N
) ) )
2521, 24breqtrd 4070 . 2  |-  ( ph  ->  0  <_  ( (  seq M (  +  ,  G ) `  N
)  -  (  seq M (  +  ,  F ) `  N
) ) )
26 eqid 2205 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
27 eluzel2 9653 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
281, 27syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2926, 28, 3serfre 10629 . . . 4  |-  ( ph  ->  seq M (  +  ,  G ) : ( ZZ>= `  M ) --> RR )
3029, 1ffvelcdmd 5716 . . 3  |-  ( ph  ->  (  seq M (  +  ,  G ) `
 N )  e.  RR )
3126, 28, 4serfre 10629 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> RR )
3231, 1ffvelcdmd 5716 . . 3  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  RR )
3330, 32subge0d 8608 . 2  |-  ( ph  ->  ( 0  <_  (
(  seq M (  +  ,  G ) `  N )  -  (  seq M (  +  ,  F ) `  N
) )  <->  (  seq M (  +  ,  F ) `  N
)  <_  (  seq M (  +  ,  G ) `  N
) ) )
3425, 33mpbid 147 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_ 
(  seq M (  +  ,  G ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   class class class wbr 4044    |-> cmpt 4105   ` cfv 5271  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928    <_ cle 8108    - cmin 8243   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265  df-seqfrec 10593
This theorem is referenced by:  iserle  11653  cvgcmpub  11787
  Copyright terms: Public domain W3C validator