ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3le Unicode version

Theorem ser3le 10608
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
ser3ge0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
ser3ge0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
ser3le.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
serle.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  <_  ( G `  k )
)
Assertion
Ref Expression
ser3le  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_ 
(  seq M (  +  ,  G ) `  N ) )
Distinct variable groups:    k, F    k, G    k, M    k, N    ph, k

Proof of Theorem ser3le
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 vex 2763 . . . . . 6  |-  k  e. 
_V
3 ser3le.3 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
4 ser3ge0.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
53, 4resubcld 8400 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( G `  k )  -  ( F `  k ) )  e.  RR )
6 fveq2 5554 . . . . . . . 8  |-  ( x  =  k  ->  ( G `  x )  =  ( G `  k ) )
7 fveq2 5554 . . . . . . . 8  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
86, 7oveq12d 5936 . . . . . . 7  |-  ( x  =  k  ->  (
( G `  x
)  -  ( F `
 x ) )  =  ( ( G `
 k )  -  ( F `  k ) ) )
9 eqid 2193 . . . . . . 7  |-  ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) )  =  ( x  e. 
_V  |->  ( ( G `
 x )  -  ( F `  x ) ) )
108, 9fvmptg 5633 . . . . . 6  |-  ( ( k  e.  _V  /\  ( ( G `  k )  -  ( F `  k )
)  e.  RR )  ->  ( ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) ) `
 k )  =  ( ( G `  k )  -  ( F `  k )
) )
112, 5, 10sylancr 414 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  =  ( ( G `
 k )  -  ( F `  k ) ) )
1211, 5eqeltrd 2270 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  e.  RR )
13 elfzuz 10087 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
14 serle.4 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  <_  ( G `  k )
)
1513, 14sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  <_  ( G `  k )
)
163, 4subge0d 8554 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 0  <_  ( ( G `
 k )  -  ( F `  k ) )  <->  ( F `  k )  <_  ( G `  k )
) )
1713, 16sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( 0  <_  ( ( G `
 k )  -  ( F `  k ) )  <->  ( F `  k )  <_  ( G `  k )
) )
1815, 17mpbird 167 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( ( G `  k
)  -  ( F `
 k ) ) )
1913, 11sylan2 286 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  =  ( ( G `
 k )  -  ( F `  k ) ) )
2018, 19breqtrrd 4057 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) `  k
) )
211, 12, 20ser3ge0 10607 . . 3  |-  ( ph  ->  0  <_  (  seq M (  +  , 
( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) ) `  N ) )
223recnd 8048 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
234recnd 8048 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
241, 22, 23, 11ser3sub 10594 . . 3  |-  ( ph  ->  (  seq M (  +  ,  ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) ) ) `  N )  =  ( (  seq M (  +  ,  G ) `  N
)  -  (  seq M (  +  ,  F ) `  N
) ) )
2521, 24breqtrd 4055 . 2  |-  ( ph  ->  0  <_  ( (  seq M (  +  ,  G ) `  N
)  -  (  seq M (  +  ,  F ) `  N
) ) )
26 eqid 2193 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
27 eluzel2 9597 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
281, 27syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2926, 28, 3serfre 10555 . . . 4  |-  ( ph  ->  seq M (  +  ,  G ) : ( ZZ>= `  M ) --> RR )
3029, 1ffvelcdmd 5694 . . 3  |-  ( ph  ->  (  seq M (  +  ,  G ) `
 N )  e.  RR )
3126, 28, 4serfre 10555 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> RR )
3231, 1ffvelcdmd 5694 . . 3  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  RR )
3330, 32subge0d 8554 . 2  |-  ( ph  ->  ( 0  <_  (
(  seq M (  +  ,  G ) `  N )  -  (  seq M (  +  ,  F ) `  N
) )  <->  (  seq M (  +  ,  F ) `  N
)  <_  (  seq M (  +  ,  G ) `  N
) ) )
3425, 33mpbid 147 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_ 
(  seq M (  +  ,  G ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872    + caddc 7875    <_ cle 8055    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519
This theorem is referenced by:  iserle  11485  cvgcmpub  11619
  Copyright terms: Public domain W3C validator