ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3le Unicode version

Theorem ser3le 10291
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
ser3ge0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
ser3ge0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
ser3le.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
serle.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  <_  ( G `  k )
)
Assertion
Ref Expression
ser3le  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_ 
(  seq M (  +  ,  G ) `  N ) )
Distinct variable groups:    k, F    k, G    k, M    k, N    ph, k

Proof of Theorem ser3le
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 vex 2689 . . . . . 6  |-  k  e. 
_V
3 ser3le.3 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
4 ser3ge0.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
53, 4resubcld 8143 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( G `  k )  -  ( F `  k ) )  e.  RR )
6 fveq2 5421 . . . . . . . 8  |-  ( x  =  k  ->  ( G `  x )  =  ( G `  k ) )
7 fveq2 5421 . . . . . . . 8  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
86, 7oveq12d 5792 . . . . . . 7  |-  ( x  =  k  ->  (
( G `  x
)  -  ( F `
 x ) )  =  ( ( G `
 k )  -  ( F `  k ) ) )
9 eqid 2139 . . . . . . 7  |-  ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) )  =  ( x  e. 
_V  |->  ( ( G `
 x )  -  ( F `  x ) ) )
108, 9fvmptg 5497 . . . . . 6  |-  ( ( k  e.  _V  /\  ( ( G `  k )  -  ( F `  k )
)  e.  RR )  ->  ( ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) ) `
 k )  =  ( ( G `  k )  -  ( F `  k )
) )
112, 5, 10sylancr 410 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  =  ( ( G `
 k )  -  ( F `  k ) ) )
1211, 5eqeltrd 2216 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  e.  RR )
13 elfzuz 9802 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
14 serle.4 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  <_  ( G `  k )
)
1513, 14sylan2 284 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  <_  ( G `  k )
)
163, 4subge0d 8297 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 0  <_  ( ( G `
 k )  -  ( F `  k ) )  <->  ( F `  k )  <_  ( G `  k )
) )
1713, 16sylan2 284 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( 0  <_  ( ( G `
 k )  -  ( F `  k ) )  <->  ( F `  k )  <_  ( G `  k )
) )
1815, 17mpbird 166 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( ( G `  k
)  -  ( F `
 k ) ) )
1913, 11sylan2 284 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  =  ( ( G `
 k )  -  ( F `  k ) ) )
2018, 19breqtrrd 3956 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) `  k
) )
211, 12, 20ser3ge0 10290 . . 3  |-  ( ph  ->  0  <_  (  seq M (  +  , 
( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) ) `  N ) )
223recnd 7794 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
234recnd 7794 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
241, 22, 23, 11ser3sub 10279 . . 3  |-  ( ph  ->  (  seq M (  +  ,  ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) ) ) `  N )  =  ( (  seq M (  +  ,  G ) `  N
)  -  (  seq M (  +  ,  F ) `  N
) ) )
2521, 24breqtrd 3954 . 2  |-  ( ph  ->  0  <_  ( (  seq M (  +  ,  G ) `  N
)  -  (  seq M (  +  ,  F ) `  N
) ) )
26 eqid 2139 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
27 eluzel2 9331 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
281, 27syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2926, 28, 3serfre 10248 . . . 4  |-  ( ph  ->  seq M (  +  ,  G ) : ( ZZ>= `  M ) --> RR )
3029, 1ffvelrnd 5556 . . 3  |-  ( ph  ->  (  seq M (  +  ,  G ) `
 N )  e.  RR )
3126, 28, 4serfre 10248 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> RR )
3231, 1ffvelrnd 5556 . . 3  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  RR )
3330, 32subge0d 8297 . 2  |-  ( ph  ->  ( 0  <_  (
(  seq M (  +  ,  G ) `  N )  -  (  seq M (  +  ,  F ) `  N
) )  <->  (  seq M (  +  ,  F ) `  N
)  <_  (  seq M (  +  ,  G ) `  N
) ) )
3425, 33mpbid 146 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_ 
(  seq M (  +  ,  G ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2686   class class class wbr 3929    |-> cmpt 3989   ` cfv 5123  (class class class)co 5774   RRcr 7619   0cc0 7620    + caddc 7623    <_ cle 7801    - cmin 7933   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920  df-seqfrec 10219
This theorem is referenced by:  iserle  11111  cvgcmpub  11245
  Copyright terms: Public domain W3C validator