ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3le Unicode version

Theorem ser3le 10646
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
ser3ge0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
ser3ge0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
ser3le.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
serle.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  <_  ( G `  k )
)
Assertion
Ref Expression
ser3le  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_ 
(  seq M (  +  ,  G ) `  N ) )
Distinct variable groups:    k, F    k, G    k, M    k, N    ph, k

Proof of Theorem ser3le
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 vex 2766 . . . . . 6  |-  k  e. 
_V
3 ser3le.3 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
4 ser3ge0.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
53, 4resubcld 8424 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( G `  k )  -  ( F `  k ) )  e.  RR )
6 fveq2 5561 . . . . . . . 8  |-  ( x  =  k  ->  ( G `  x )  =  ( G `  k ) )
7 fveq2 5561 . . . . . . . 8  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
86, 7oveq12d 5943 . . . . . . 7  |-  ( x  =  k  ->  (
( G `  x
)  -  ( F `
 x ) )  =  ( ( G `
 k )  -  ( F `  k ) ) )
9 eqid 2196 . . . . . . 7  |-  ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) )  =  ( x  e. 
_V  |->  ( ( G `
 x )  -  ( F `  x ) ) )
108, 9fvmptg 5640 . . . . . 6  |-  ( ( k  e.  _V  /\  ( ( G `  k )  -  ( F `  k )
)  e.  RR )  ->  ( ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) ) `
 k )  =  ( ( G `  k )  -  ( F `  k )
) )
112, 5, 10sylancr 414 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  =  ( ( G `
 k )  -  ( F `  k ) ) )
1211, 5eqeltrd 2273 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  e.  RR )
13 elfzuz 10113 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
14 serle.4 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  <_  ( G `  k )
)
1513, 14sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  <_  ( G `  k )
)
163, 4subge0d 8579 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 0  <_  ( ( G `
 k )  -  ( F `  k ) )  <->  ( F `  k )  <_  ( G `  k )
) )
1713, 16sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( 0  <_  ( ( G `
 k )  -  ( F `  k ) )  <->  ( F `  k )  <_  ( G `  k )
) )
1815, 17mpbird 167 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( ( G `  k
)  -  ( F `
 k ) ) )
1913, 11sylan2 286 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  =  ( ( G `
 k )  -  ( F `  k ) ) )
2018, 19breqtrrd 4062 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) `  k
) )
211, 12, 20ser3ge0 10645 . . 3  |-  ( ph  ->  0  <_  (  seq M (  +  , 
( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) ) `  N ) )
223recnd 8072 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
234recnd 8072 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
241, 22, 23, 11ser3sub 10632 . . 3  |-  ( ph  ->  (  seq M (  +  ,  ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) ) ) `  N )  =  ( (  seq M (  +  ,  G ) `  N
)  -  (  seq M (  +  ,  F ) `  N
) ) )
2521, 24breqtrd 4060 . 2  |-  ( ph  ->  0  <_  ( (  seq M (  +  ,  G ) `  N
)  -  (  seq M (  +  ,  F ) `  N
) ) )
26 eqid 2196 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
27 eluzel2 9623 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
281, 27syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2926, 28, 3serfre 10593 . . . 4  |-  ( ph  ->  seq M (  +  ,  G ) : ( ZZ>= `  M ) --> RR )
3029, 1ffvelcdmd 5701 . . 3  |-  ( ph  ->  (  seq M (  +  ,  G ) `
 N )  e.  RR )
3126, 28, 4serfre 10593 . . . 4  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> RR )
3231, 1ffvelcdmd 5701 . . 3  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  RR )
3330, 32subge0d 8579 . 2  |-  ( ph  ->  ( 0  <_  (
(  seq M (  +  ,  G ) `  N )  -  (  seq M (  +  ,  F ) `  N
) )  <->  (  seq M (  +  ,  F ) `  N
)  <_  (  seq M (  +  ,  G ) `  N
) ) )
3425, 33mpbid 147 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_ 
(  seq M (  +  ,  G ) `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   RRcr 7895   0cc0 7896    + caddc 7899    <_ cle 8079    - cmin 8214   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557
This theorem is referenced by:  iserle  11524  cvgcmpub  11658
  Copyright terms: Public domain W3C validator