ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlem1 Unicode version

Theorem eulerthlem1 12227
Description: Lemma for eulerth 12233. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
eulerthlem1.1  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
eulerthlem1.2  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
eulerthlem1.3  |-  T  =  ( 1 ... ( phi `  N ) )
eulerthlem1.4  |-  ( ph  ->  F : T -1-1-onto-> S )
eulerthlem1.5  |-  G  =  ( x  e.  T  |->  ( ( A  x.  ( F `  x ) )  mod  N ) )
Assertion
Ref Expression
eulerthlem1  |-  ( ph  ->  G : T --> S )
Distinct variable groups:    x, y, A   
x, F, y    x, G, y    x, N, y   
x, S    ph, x, y   
x, T, y
Allowed substitution hint:    S( y)

Proof of Theorem eulerthlem1
StepHypRef Expression
1 eulerthlem1.1 . . . . . . 7  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
21simp2d 1010 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
32adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  A  e.  ZZ )
4 eulerthlem1.4 . . . . . . . . . 10  |-  ( ph  ->  F : T -1-1-onto-> S )
5 f1of 5462 . . . . . . . . . 10  |-  ( F : T -1-1-onto-> S  ->  F : T
--> S )
64, 5syl 14 . . . . . . . . 9  |-  ( ph  ->  F : T --> S )
76ffvelcdmda 5652 . . . . . . . 8  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  S )
8 oveq1 5882 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  ->  (
y  gcd  N )  =  ( ( F `
 x )  gcd 
N ) )
98eqeq1d 2186 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( y  gcd  N
)  =  1  <->  (
( F `  x
)  gcd  N )  =  1 ) )
10 eulerthlem1.2 . . . . . . . . 9  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
119, 10elrab2 2897 . . . . . . . 8  |-  ( ( F `  x )  e.  S  <->  ( ( F `  x )  e.  ( 0..^ N )  /\  ( ( F `
 x )  gcd 
N )  =  1 ) )
127, 11sylib 122 . . . . . . 7  |-  ( (
ph  /\  x  e.  T )  ->  (
( F `  x
)  e.  ( 0..^ N )  /\  (
( F `  x
)  gcd  N )  =  1 ) )
1312simpld 112 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ( 0..^ N ) )
14 elfzoelz 10147 . . . . . 6  |-  ( ( F `  x )  e.  ( 0..^ N )  ->  ( F `  x )  e.  ZZ )
1513, 14syl 14 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ZZ )
163, 15zmulcld 9381 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( A  x.  ( F `  x ) )  e.  ZZ )
171simp1d 1009 . . . . 5  |-  ( ph  ->  N  e.  NN )
1817adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  N  e.  NN )
19 zmodfzo 10347 . . . 4  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  x.  ( F `  x ) )  mod  N )  e.  ( 0..^ N ) )
2016, 18, 19syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  mod  N )  e.  ( 0..^ N ) )
21 modgcd 11992 . . . . 5  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  x.  ( F `  x ) )  mod 
N )  gcd  N
)  =  ( ( A  x.  ( F `
 x ) )  gcd  N ) )
2216, 18, 21syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  ( ( A  x.  ( F `  x ) )  gcd  N ) )
2317nnzd 9374 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
2423adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  N  e.  ZZ )
2516, 24gcdcomd 11975 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  gcd  N )  =  ( N  gcd  ( A  x.  ( F `  x )
) ) )
2623, 2gcdcomd 11975 . . . . . . 7  |-  ( ph  ->  ( N  gcd  A
)  =  ( A  gcd  N ) )
271simp3d 1011 . . . . . . 7  |-  ( ph  ->  ( A  gcd  N
)  =  1 )
2826, 27eqtrd 2210 . . . . . 6  |-  ( ph  ->  ( N  gcd  A
)  =  1 )
2928adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  A )  =  1 )
3024, 15gcdcomd 11975 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( F `  x ) )  =  ( ( F `  x )  gcd  N
) )
3112simprd 114 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  (
( F `  x
)  gcd  N )  =  1 )
3230, 31eqtrd 2210 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( F `  x ) )  =  1 )
33 rpmul 12098 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  ( F `  x )  e.  ZZ )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
3424, 3, 15, 33syl3anc 1238 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
3529, 32, 34mp2and 433 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( A  x.  ( F `  x ) ) )  =  1 )
3622, 25, 353eqtrd 2214 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 )
37 oveq1 5882 . . . . 5  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
y  gcd  N )  =  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N ) )
3837eqeq1d 2186 . . . 4  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
( y  gcd  N
)  =  1  <->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 ) )
3938, 10elrab2 2897 . . 3  |-  ( ( ( A  x.  ( F `  x )
)  mod  N )  e.  S  <->  ( ( ( A  x.  ( F `
 x ) )  mod  N )  e.  ( 0..^ N )  /\  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N )  =  1 ) )
4020, 36, 39sylanbrc 417 . 2  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  mod  N )  e.  S )
41 eulerthlem1.5 . 2  |-  G  =  ( x  e.  T  |->  ( ( A  x.  ( F `  x ) )  mod  N ) )
4240, 41fmptd 5671 1  |-  ( ph  ->  G : T --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   {crab 2459    |-> cmpt 4065   -->wf 5213   -1-1-onto->wf1o 5216   ` cfv 5217  (class class class)co 5875   0cc0 7811   1c1 7812    x. cmul 7816   NNcn 8919   ZZcz 9253   ...cfz 10008  ..^cfzo 10142    mod cmo 10322    gcd cgcd 11943   phicphi 12209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-sup 6983  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-dvds 11795  df-gcd 11944
This theorem is referenced by:  eulerthlemh  12231  eulerthlemth  12232
  Copyright terms: Public domain W3C validator