ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlem1 Unicode version

Theorem eulerthlem1 12715
Description: Lemma for eulerth 12721. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
eulerthlem1.1  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
eulerthlem1.2  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
eulerthlem1.3  |-  T  =  ( 1 ... ( phi `  N ) )
eulerthlem1.4  |-  ( ph  ->  F : T -1-1-onto-> S )
eulerthlem1.5  |-  G  =  ( x  e.  T  |->  ( ( A  x.  ( F `  x ) )  mod  N ) )
Assertion
Ref Expression
eulerthlem1  |-  ( ph  ->  G : T --> S )
Distinct variable groups:    x, y, A   
x, F, y    x, G, y    x, N, y   
x, S    ph, x, y   
x, T, y
Allowed substitution hint:    S( y)

Proof of Theorem eulerthlem1
StepHypRef Expression
1 eulerthlem1.1 . . . . . . 7  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
21simp2d 1015 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
32adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  A  e.  ZZ )
4 eulerthlem1.4 . . . . . . . . . 10  |-  ( ph  ->  F : T -1-1-onto-> S )
5 f1of 5548 . . . . . . . . . 10  |-  ( F : T -1-1-onto-> S  ->  F : T
--> S )
64, 5syl 14 . . . . . . . . 9  |-  ( ph  ->  F : T --> S )
76ffvelcdmda 5743 . . . . . . . 8  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  S )
8 oveq1 5981 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  ->  (
y  gcd  N )  =  ( ( F `
 x )  gcd 
N ) )
98eqeq1d 2218 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( y  gcd  N
)  =  1  <->  (
( F `  x
)  gcd  N )  =  1 ) )
10 eulerthlem1.2 . . . . . . . . 9  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
119, 10elrab2 2942 . . . . . . . 8  |-  ( ( F `  x )  e.  S  <->  ( ( F `  x )  e.  ( 0..^ N )  /\  ( ( F `
 x )  gcd 
N )  =  1 ) )
127, 11sylib 122 . . . . . . 7  |-  ( (
ph  /\  x  e.  T )  ->  (
( F `  x
)  e.  ( 0..^ N )  /\  (
( F `  x
)  gcd  N )  =  1 ) )
1312simpld 112 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ( 0..^ N ) )
14 elfzoelz 10311 . . . . . 6  |-  ( ( F `  x )  e.  ( 0..^ N )  ->  ( F `  x )  e.  ZZ )
1513, 14syl 14 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ZZ )
163, 15zmulcld 9543 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( A  x.  ( F `  x ) )  e.  ZZ )
171simp1d 1014 . . . . 5  |-  ( ph  ->  N  e.  NN )
1817adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  N  e.  NN )
19 zmodfzo 10536 . . . 4  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  x.  ( F `  x ) )  mod  N )  e.  ( 0..^ N ) )
2016, 18, 19syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  mod  N )  e.  ( 0..^ N ) )
21 modgcd 12478 . . . . 5  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  x.  ( F `  x ) )  mod 
N )  gcd  N
)  =  ( ( A  x.  ( F `
 x ) )  gcd  N ) )
2216, 18, 21syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  ( ( A  x.  ( F `  x ) )  gcd  N ) )
2317nnzd 9536 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
2423adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  N  e.  ZZ )
2516, 24gcdcomd 12461 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  gcd  N )  =  ( N  gcd  ( A  x.  ( F `  x )
) ) )
2623, 2gcdcomd 12461 . . . . . . 7  |-  ( ph  ->  ( N  gcd  A
)  =  ( A  gcd  N ) )
271simp3d 1016 . . . . . . 7  |-  ( ph  ->  ( A  gcd  N
)  =  1 )
2826, 27eqtrd 2242 . . . . . 6  |-  ( ph  ->  ( N  gcd  A
)  =  1 )
2928adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  A )  =  1 )
3024, 15gcdcomd 12461 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( F `  x ) )  =  ( ( F `  x )  gcd  N
) )
3112simprd 114 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  (
( F `  x
)  gcd  N )  =  1 )
3230, 31eqtrd 2242 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( F `  x ) )  =  1 )
33 rpmul 12586 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  ( F `  x )  e.  ZZ )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
3424, 3, 15, 33syl3anc 1252 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
3529, 32, 34mp2and 433 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( A  x.  ( F `  x ) ) )  =  1 )
3622, 25, 353eqtrd 2246 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 )
37 oveq1 5981 . . . . 5  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
y  gcd  N )  =  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N ) )
3837eqeq1d 2218 . . . 4  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
( y  gcd  N
)  =  1  <->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 ) )
3938, 10elrab2 2942 . . 3  |-  ( ( ( A  x.  ( F `  x )
)  mod  N )  e.  S  <->  ( ( ( A  x.  ( F `
 x ) )  mod  N )  e.  ( 0..^ N )  /\  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N )  =  1 ) )
4020, 36, 39sylanbrc 417 . 2  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  mod  N )  e.  S )
41 eulerthlem1.5 . 2  |-  G  =  ( x  e.  T  |->  ( ( A  x.  ( F `  x ) )  mod  N ) )
4240, 41fmptd 5762 1  |-  ( ph  ->  G : T --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 983    = wceq 1375    e. wcel 2180   {crab 2492    |-> cmpt 4124   -->wf 5290   -1-1-onto->wf1o 5293   ` cfv 5294  (class class class)co 5974   0cc0 7967   1c1 7968    x. cmul 7972   NNcn 9078   ZZcz 9414   ...cfz 10172  ..^cfzo 10306    mod cmo 10511    gcd cgcd 12440   phicphi 12697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-gcd 12441
This theorem is referenced by:  eulerthlemh  12719  eulerthlemth  12720
  Copyright terms: Public domain W3C validator