ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlem1 Unicode version

Theorem eulerthlem1 12365
Description: Lemma for eulerth 12371. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
eulerthlem1.1  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
eulerthlem1.2  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
eulerthlem1.3  |-  T  =  ( 1 ... ( phi `  N ) )
eulerthlem1.4  |-  ( ph  ->  F : T -1-1-onto-> S )
eulerthlem1.5  |-  G  =  ( x  e.  T  |->  ( ( A  x.  ( F `  x ) )  mod  N ) )
Assertion
Ref Expression
eulerthlem1  |-  ( ph  ->  G : T --> S )
Distinct variable groups:    x, y, A   
x, F, y    x, G, y    x, N, y   
x, S    ph, x, y   
x, T, y
Allowed substitution hint:    S( y)

Proof of Theorem eulerthlem1
StepHypRef Expression
1 eulerthlem1.1 . . . . . . 7  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
21simp2d 1012 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
32adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  A  e.  ZZ )
4 eulerthlem1.4 . . . . . . . . . 10  |-  ( ph  ->  F : T -1-1-onto-> S )
5 f1of 5500 . . . . . . . . . 10  |-  ( F : T -1-1-onto-> S  ->  F : T
--> S )
64, 5syl 14 . . . . . . . . 9  |-  ( ph  ->  F : T --> S )
76ffvelcdmda 5693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  S )
8 oveq1 5925 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  ->  (
y  gcd  N )  =  ( ( F `
 x )  gcd 
N ) )
98eqeq1d 2202 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( y  gcd  N
)  =  1  <->  (
( F `  x
)  gcd  N )  =  1 ) )
10 eulerthlem1.2 . . . . . . . . 9  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
119, 10elrab2 2919 . . . . . . . 8  |-  ( ( F `  x )  e.  S  <->  ( ( F `  x )  e.  ( 0..^ N )  /\  ( ( F `
 x )  gcd 
N )  =  1 ) )
127, 11sylib 122 . . . . . . 7  |-  ( (
ph  /\  x  e.  T )  ->  (
( F `  x
)  e.  ( 0..^ N )  /\  (
( F `  x
)  gcd  N )  =  1 ) )
1312simpld 112 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ( 0..^ N ) )
14 elfzoelz 10213 . . . . . 6  |-  ( ( F `  x )  e.  ( 0..^ N )  ->  ( F `  x )  e.  ZZ )
1513, 14syl 14 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ZZ )
163, 15zmulcld 9445 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( A  x.  ( F `  x ) )  e.  ZZ )
171simp1d 1011 . . . . 5  |-  ( ph  ->  N  e.  NN )
1817adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  N  e.  NN )
19 zmodfzo 10418 . . . 4  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  x.  ( F `  x ) )  mod  N )  e.  ( 0..^ N ) )
2016, 18, 19syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  mod  N )  e.  ( 0..^ N ) )
21 modgcd 12128 . . . . 5  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  x.  ( F `  x ) )  mod 
N )  gcd  N
)  =  ( ( A  x.  ( F `
 x ) )  gcd  N ) )
2216, 18, 21syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  ( ( A  x.  ( F `  x ) )  gcd  N ) )
2317nnzd 9438 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
2423adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  N  e.  ZZ )
2516, 24gcdcomd 12111 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  gcd  N )  =  ( N  gcd  ( A  x.  ( F `  x )
) ) )
2623, 2gcdcomd 12111 . . . . . . 7  |-  ( ph  ->  ( N  gcd  A
)  =  ( A  gcd  N ) )
271simp3d 1013 . . . . . . 7  |-  ( ph  ->  ( A  gcd  N
)  =  1 )
2826, 27eqtrd 2226 . . . . . 6  |-  ( ph  ->  ( N  gcd  A
)  =  1 )
2928adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  A )  =  1 )
3024, 15gcdcomd 12111 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( F `  x ) )  =  ( ( F `  x )  gcd  N
) )
3112simprd 114 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  (
( F `  x
)  gcd  N )  =  1 )
3230, 31eqtrd 2226 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( F `  x ) )  =  1 )
33 rpmul 12236 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  ( F `  x )  e.  ZZ )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
3424, 3, 15, 33syl3anc 1249 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
3529, 32, 34mp2and 433 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( A  x.  ( F `  x ) ) )  =  1 )
3622, 25, 353eqtrd 2230 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 )
37 oveq1 5925 . . . . 5  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
y  gcd  N )  =  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N ) )
3837eqeq1d 2202 . . . 4  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
( y  gcd  N
)  =  1  <->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 ) )
3938, 10elrab2 2919 . . 3  |-  ( ( ( A  x.  ( F `  x )
)  mod  N )  e.  S  <->  ( ( ( A  x.  ( F `
 x ) )  mod  N )  e.  ( 0..^ N )  /\  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N )  =  1 ) )
4020, 36, 39sylanbrc 417 . 2  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  mod  N )  e.  S )
41 eulerthlem1.5 . 2  |-  G  =  ( x  e.  T  |->  ( ( A  x.  ( F `  x ) )  mod  N ) )
4240, 41fmptd 5712 1  |-  ( ph  ->  G : T --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   {crab 2476    |-> cmpt 4090   -->wf 5250   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   0cc0 7872   1c1 7873    x. cmul 7877   NNcn 8982   ZZcz 9317   ...cfz 10074  ..^cfzo 10208    mod cmo 10393    gcd cgcd 12079   phicphi 12347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  eulerthlemh  12369  eulerthlemth  12370
  Copyright terms: Public domain W3C validator