ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlem1 Unicode version

Theorem eulerthlem1 12159
Description: Lemma for eulerth 12165. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
eulerthlem1.1  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
eulerthlem1.2  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
eulerthlem1.3  |-  T  =  ( 1 ... ( phi `  N ) )
eulerthlem1.4  |-  ( ph  ->  F : T -1-1-onto-> S )
eulerthlem1.5  |-  G  =  ( x  e.  T  |->  ( ( A  x.  ( F `  x ) )  mod  N ) )
Assertion
Ref Expression
eulerthlem1  |-  ( ph  ->  G : T --> S )
Distinct variable groups:    x, y, A   
x, F, y    x, G, y    x, N, y   
x, S    ph, x, y   
x, T, y
Allowed substitution hint:    S( y)

Proof of Theorem eulerthlem1
StepHypRef Expression
1 eulerthlem1.1 . . . . . . 7  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
21simp2d 1000 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
32adantr 274 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  A  e.  ZZ )
4 eulerthlem1.4 . . . . . . . . . 10  |-  ( ph  ->  F : T -1-1-onto-> S )
5 f1of 5432 . . . . . . . . . 10  |-  ( F : T -1-1-onto-> S  ->  F : T
--> S )
64, 5syl 14 . . . . . . . . 9  |-  ( ph  ->  F : T --> S )
76ffvelrnda 5620 . . . . . . . 8  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  S )
8 oveq1 5849 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  ->  (
y  gcd  N )  =  ( ( F `
 x )  gcd 
N ) )
98eqeq1d 2174 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( y  gcd  N
)  =  1  <->  (
( F `  x
)  gcd  N )  =  1 ) )
10 eulerthlem1.2 . . . . . . . . 9  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
119, 10elrab2 2885 . . . . . . . 8  |-  ( ( F `  x )  e.  S  <->  ( ( F `  x )  e.  ( 0..^ N )  /\  ( ( F `
 x )  gcd 
N )  =  1 ) )
127, 11sylib 121 . . . . . . 7  |-  ( (
ph  /\  x  e.  T )  ->  (
( F `  x
)  e.  ( 0..^ N )  /\  (
( F `  x
)  gcd  N )  =  1 ) )
1312simpld 111 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ( 0..^ N ) )
14 elfzoelz 10082 . . . . . 6  |-  ( ( F `  x )  e.  ( 0..^ N )  ->  ( F `  x )  e.  ZZ )
1513, 14syl 14 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ZZ )
163, 15zmulcld 9319 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( A  x.  ( F `  x ) )  e.  ZZ )
171simp1d 999 . . . . 5  |-  ( ph  ->  N  e.  NN )
1817adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  N  e.  NN )
19 zmodfzo 10282 . . . 4  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  x.  ( F `  x ) )  mod  N )  e.  ( 0..^ N ) )
2016, 18, 19syl2anc 409 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  mod  N )  e.  ( 0..^ N ) )
21 modgcd 11924 . . . . 5  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  x.  ( F `  x ) )  mod 
N )  gcd  N
)  =  ( ( A  x.  ( F `
 x ) )  gcd  N ) )
2216, 18, 21syl2anc 409 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  ( ( A  x.  ( F `  x ) )  gcd  N ) )
2317nnzd 9312 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
2423adantr 274 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  N  e.  ZZ )
2516, 24gcdcomd 11907 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  gcd  N )  =  ( N  gcd  ( A  x.  ( F `  x )
) ) )
2623, 2gcdcomd 11907 . . . . . . 7  |-  ( ph  ->  ( N  gcd  A
)  =  ( A  gcd  N ) )
271simp3d 1001 . . . . . . 7  |-  ( ph  ->  ( A  gcd  N
)  =  1 )
2826, 27eqtrd 2198 . . . . . 6  |-  ( ph  ->  ( N  gcd  A
)  =  1 )
2928adantr 274 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  A )  =  1 )
3024, 15gcdcomd 11907 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( F `  x ) )  =  ( ( F `  x )  gcd  N
) )
3112simprd 113 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  (
( F `  x
)  gcd  N )  =  1 )
3230, 31eqtrd 2198 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( F `  x ) )  =  1 )
33 rpmul 12030 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  ( F `  x )  e.  ZZ )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
3424, 3, 15, 33syl3anc 1228 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
3529, 32, 34mp2and 430 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( A  x.  ( F `  x ) ) )  =  1 )
3622, 25, 353eqtrd 2202 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 )
37 oveq1 5849 . . . . 5  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
y  gcd  N )  =  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N ) )
3837eqeq1d 2174 . . . 4  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
( y  gcd  N
)  =  1  <->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 ) )
3938, 10elrab2 2885 . . 3  |-  ( ( ( A  x.  ( F `  x )
)  mod  N )  e.  S  <->  ( ( ( A  x.  ( F `
 x ) )  mod  N )  e.  ( 0..^ N )  /\  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N )  =  1 ) )
4020, 36, 39sylanbrc 414 . 2  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  mod  N )  e.  S )
41 eulerthlem1.5 . 2  |-  G  =  ( x  e.  T  |->  ( ( A  x.  ( F `  x ) )  mod  N ) )
4240, 41fmptd 5639 1  |-  ( ph  ->  G : T --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   {crab 2448    |-> cmpt 4043   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   0cc0 7753   1c1 7754    x. cmul 7758   NNcn 8857   ZZcz 9191   ...cfz 9944  ..^cfzo 10077    mod cmo 10257    gcd cgcd 11875   phicphi 12141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  eulerthlemh  12163  eulerthlemth  12164
  Copyright terms: Public domain W3C validator