ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlem1 Unicode version

Theorem eulerthlem1 12593
Description: Lemma for eulerth 12599. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
eulerthlem1.1  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
eulerthlem1.2  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
eulerthlem1.3  |-  T  =  ( 1 ... ( phi `  N ) )
eulerthlem1.4  |-  ( ph  ->  F : T -1-1-onto-> S )
eulerthlem1.5  |-  G  =  ( x  e.  T  |->  ( ( A  x.  ( F `  x ) )  mod  N ) )
Assertion
Ref Expression
eulerthlem1  |-  ( ph  ->  G : T --> S )
Distinct variable groups:    x, y, A   
x, F, y    x, G, y    x, N, y   
x, S    ph, x, y   
x, T, y
Allowed substitution hint:    S( y)

Proof of Theorem eulerthlem1
StepHypRef Expression
1 eulerthlem1.1 . . . . . . 7  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
21simp2d 1013 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
32adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  A  e.  ZZ )
4 eulerthlem1.4 . . . . . . . . . 10  |-  ( ph  ->  F : T -1-1-onto-> S )
5 f1of 5529 . . . . . . . . . 10  |-  ( F : T -1-1-onto-> S  ->  F : T
--> S )
64, 5syl 14 . . . . . . . . 9  |-  ( ph  ->  F : T --> S )
76ffvelcdmda 5722 . . . . . . . 8  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  S )
8 oveq1 5958 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  ->  (
y  gcd  N )  =  ( ( F `
 x )  gcd 
N ) )
98eqeq1d 2215 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( y  gcd  N
)  =  1  <->  (
( F `  x
)  gcd  N )  =  1 ) )
10 eulerthlem1.2 . . . . . . . . 9  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
119, 10elrab2 2933 . . . . . . . 8  |-  ( ( F `  x )  e.  S  <->  ( ( F `  x )  e.  ( 0..^ N )  /\  ( ( F `
 x )  gcd 
N )  =  1 ) )
127, 11sylib 122 . . . . . . 7  |-  ( (
ph  /\  x  e.  T )  ->  (
( F `  x
)  e.  ( 0..^ N )  /\  (
( F `  x
)  gcd  N )  =  1 ) )
1312simpld 112 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ( 0..^ N ) )
14 elfzoelz 10276 . . . . . 6  |-  ( ( F `  x )  e.  ( 0..^ N )  ->  ( F `  x )  e.  ZZ )
1513, 14syl 14 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ZZ )
163, 15zmulcld 9508 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( A  x.  ( F `  x ) )  e.  ZZ )
171simp1d 1012 . . . . 5  |-  ( ph  ->  N  e.  NN )
1817adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  N  e.  NN )
19 zmodfzo 10499 . . . 4  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  x.  ( F `  x ) )  mod  N )  e.  ( 0..^ N ) )
2016, 18, 19syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  mod  N )  e.  ( 0..^ N ) )
21 modgcd 12356 . . . . 5  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  x.  ( F `  x ) )  mod 
N )  gcd  N
)  =  ( ( A  x.  ( F `
 x ) )  gcd  N ) )
2216, 18, 21syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  ( ( A  x.  ( F `  x ) )  gcd  N ) )
2317nnzd 9501 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
2423adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  N  e.  ZZ )
2516, 24gcdcomd 12339 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  gcd  N )  =  ( N  gcd  ( A  x.  ( F `  x )
) ) )
2623, 2gcdcomd 12339 . . . . . . 7  |-  ( ph  ->  ( N  gcd  A
)  =  ( A  gcd  N ) )
271simp3d 1014 . . . . . . 7  |-  ( ph  ->  ( A  gcd  N
)  =  1 )
2826, 27eqtrd 2239 . . . . . 6  |-  ( ph  ->  ( N  gcd  A
)  =  1 )
2928adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  A )  =  1 )
3024, 15gcdcomd 12339 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( F `  x ) )  =  ( ( F `  x )  gcd  N
) )
3112simprd 114 . . . . . 6  |-  ( (
ph  /\  x  e.  T )  ->  (
( F `  x
)  gcd  N )  =  1 )
3230, 31eqtrd 2239 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( F `  x ) )  =  1 )
33 rpmul 12464 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  ( F `  x )  e.  ZZ )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
3424, 3, 15, 33syl3anc 1250 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
3529, 32, 34mp2and 433 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( N  gcd  ( A  x.  ( F `  x ) ) )  =  1 )
3622, 25, 353eqtrd 2243 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 )
37 oveq1 5958 . . . . 5  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
y  gcd  N )  =  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N ) )
3837eqeq1d 2215 . . . 4  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
( y  gcd  N
)  =  1  <->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 ) )
3938, 10elrab2 2933 . . 3  |-  ( ( ( A  x.  ( F `  x )
)  mod  N )  e.  S  <->  ( ( ( A  x.  ( F `
 x ) )  mod  N )  e.  ( 0..^ N )  /\  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N )  =  1 ) )
4020, 36, 39sylanbrc 417 . 2  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  x.  ( F `  x )
)  mod  N )  e.  S )
41 eulerthlem1.5 . 2  |-  G  =  ( x  e.  T  |->  ( ( A  x.  ( F `  x ) )  mod  N ) )
4240, 41fmptd 5741 1  |-  ( ph  ->  G : T --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   {crab 2489    |-> cmpt 4109   -->wf 5272   -1-1-onto->wf1o 5275   ` cfv 5276  (class class class)co 5951   0cc0 7932   1c1 7933    x. cmul 7937   NNcn 9043   ZZcz 9379   ...cfz 10137  ..^cfzo 10271    mod cmo 10474    gcd cgcd 12318   phicphi 12575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-gcd 12319
This theorem is referenced by:  eulerthlemh  12597  eulerthlemth  12598
  Copyright terms: Public domain W3C validator