| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fisumrev2 | GIF version | ||
| Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.) | 
| Ref | Expression | 
|---|---|
| fisumrev2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| fisumrev2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| fsumrev2.1 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | 
| fsumrev2.2 | ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| fisumrev2 | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fisumrev2.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | 
| 3 | fisumrev2.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ ℤ) | 
| 5 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ 𝑁) | |
| 6 | eluz2 9607 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 7 | 2, 4, 5, 6 | syl3anbrc 1183 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 8 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) | 
| 9 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) | 
| 10 | 8, 9 | zaddcld 9452 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑀 + 𝑁) ∈ ℤ) | 
| 11 | fsumrev2.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 12 | 11 | adantlr 477 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | 
| 13 | fsumrev2.2 | . . . . 5 ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) | |
| 14 | 10, 8, 9, 12, 13 | fsumrev 11608 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵) | 
| 15 | 8 | zcnd 9449 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℂ) | 
| 16 | 9 | zcnd 9449 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℂ) | 
| 17 | 15, 16 | pncand 8338 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) | 
| 18 | 15, 16 | pncan2d 8339 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) | 
| 19 | 17, 18 | oveq12d 5940 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁)) | 
| 20 | 19 | sumeq1d 11531 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | 
| 21 | 14, 20 | eqtrd 2229 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | 
| 22 | 7, 21 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | 
| 23 | fzn 10117 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | |
| 24 | 1, 3, 23 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | 
| 25 | 24 | biimpa 296 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝑀...𝑁) = ∅) | 
| 26 | sum0 11553 | . . . . 5 ⊢ Σ𝑗 ∈ ∅ 𝐴 = 0 | |
| 27 | sum0 11553 | . . . . 5 ⊢ Σ𝑘 ∈ ∅ 𝐵 = 0 | |
| 28 | 26, 27 | eqtr4i 2220 | . . . 4 ⊢ Σ𝑗 ∈ ∅ 𝐴 = Σ𝑘 ∈ ∅ 𝐵 | 
| 29 | sumeq1 11520 | . . . 4 ⊢ ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑗 ∈ ∅ 𝐴) | |
| 30 | sumeq1 11520 | . . . 4 ⊢ ((𝑀...𝑁) = ∅ → Σ𝑘 ∈ (𝑀...𝑁)𝐵 = Σ𝑘 ∈ ∅ 𝐵) | |
| 31 | 28, 29, 30 | 3eqtr4a 2255 | . . 3 ⊢ ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | 
| 32 | 25, 31 | syl 14 | . 2 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | 
| 33 | zlelttric 9371 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ 𝑁 < 𝑀)) | |
| 34 | 1, 3, 33 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑀 ≤ 𝑁 ∨ 𝑁 < 𝑀)) | 
| 35 | 22, 32, 34 | mpjaodan 799 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∅c0 3450 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 0cc0 7879 + caddc 7882 < clt 8061 ≤ cle 8062 − cmin 8197 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 Σcsu 11518 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 | 
| This theorem is referenced by: fisum0diag2 11612 efaddlem 11839 | 
| Copyright terms: Public domain | W3C validator |