Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fisumrev2 | GIF version |
Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
fisumrev2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
fisumrev2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fsumrev2.1 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsumrev2.2 | ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fisumrev2 | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fisumrev2.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | 1 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) |
3 | fisumrev2.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | 3 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ ℤ) |
5 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ 𝑁) | |
6 | eluz2 9493 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
7 | 2, 4, 5, 6 | syl3anbrc 1176 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
8 | 1 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
9 | 3 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
10 | 8, 9 | zaddcld 9338 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑀 + 𝑁) ∈ ℤ) |
11 | fsumrev2.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
12 | 11 | adantlr 474 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
13 | fsumrev2.2 | . . . . 5 ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) | |
14 | 10, 8, 9, 12, 13 | fsumrev 11406 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵) |
15 | 8 | zcnd 9335 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℂ) |
16 | 9 | zcnd 9335 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℂ) |
17 | 15, 16 | pncand 8231 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
18 | 15, 16 | pncan2d 8232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
19 | 17, 18 | oveq12d 5871 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁)) |
20 | 19 | sumeq1d 11329 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
21 | 14, 20 | eqtrd 2203 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
22 | 7, 21 | syldan 280 | . 2 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
23 | fzn 9998 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | |
24 | 1, 3, 23 | syl2anc 409 | . . . 4 ⊢ (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) |
25 | 24 | biimpa 294 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝑀...𝑁) = ∅) |
26 | sum0 11351 | . . . . 5 ⊢ Σ𝑗 ∈ ∅ 𝐴 = 0 | |
27 | sum0 11351 | . . . . 5 ⊢ Σ𝑘 ∈ ∅ 𝐵 = 0 | |
28 | 26, 27 | eqtr4i 2194 | . . . 4 ⊢ Σ𝑗 ∈ ∅ 𝐴 = Σ𝑘 ∈ ∅ 𝐵 |
29 | sumeq1 11318 | . . . 4 ⊢ ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑗 ∈ ∅ 𝐴) | |
30 | sumeq1 11318 | . . . 4 ⊢ ((𝑀...𝑁) = ∅ → Σ𝑘 ∈ (𝑀...𝑁)𝐵 = Σ𝑘 ∈ ∅ 𝐵) | |
31 | 28, 29, 30 | 3eqtr4a 2229 | . . 3 ⊢ ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
32 | 25, 31 | syl 14 | . 2 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
33 | zlelttric 9257 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ 𝑁 < 𝑀)) | |
34 | 1, 3, 33 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝑀 ≤ 𝑁 ∨ 𝑁 < 𝑀)) |
35 | 22, 32, 34 | mpjaodan 793 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∅c0 3414 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 0cc0 7774 + caddc 7777 < clt 7954 ≤ cle 7955 − cmin 8090 ℤcz 9212 ℤ≥cuz 9487 ...cfz 9965 Σcsu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 |
This theorem is referenced by: fisum0diag2 11410 efaddlem 11637 |
Copyright terms: Public domain | W3C validator |