ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumrev2 GIF version

Theorem fisumrev2 11611
Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fisumrev2.m (𝜑𝑀 ∈ ℤ)
fisumrev2.n (𝜑𝑁 ∈ ℤ)
fsumrev2.1 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumrev2.2 (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵)
Assertion
Ref Expression
fisumrev2 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fisumrev2
StepHypRef Expression
1 fisumrev2.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21adantr 276 . . . 4 ((𝜑𝑀𝑁) → 𝑀 ∈ ℤ)
3 fisumrev2.n . . . . 5 (𝜑𝑁 ∈ ℤ)
43adantr 276 . . . 4 ((𝜑𝑀𝑁) → 𝑁 ∈ ℤ)
5 simpr 110 . . . 4 ((𝜑𝑀𝑁) → 𝑀𝑁)
6 eluz2 9607 . . . 4 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
72, 4, 5, 6syl3anbrc 1183 . . 3 ((𝜑𝑀𝑁) → 𝑁 ∈ (ℤ𝑀))
81adantr 276 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
93adantr 276 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
108, 9zaddcld 9452 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → (𝑀 + 𝑁) ∈ ℤ)
11 fsumrev2.1 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1211adantlr 477 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
13 fsumrev2.2 . . . . 5 (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵)
1410, 8, 9, 12, 13fsumrev 11608 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵)
158zcnd 9449 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
169zcnd 9449 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
1715, 16pncand 8338 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
1815, 16pncan2d 8339 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
1917, 18oveq12d 5940 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁))
2019sumeq1d 11531 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
2114, 20eqtrd 2229 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
227, 21syldan 282 . 2 ((𝜑𝑀𝑁) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
23 fzn 10117 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
241, 3, 23syl2anc 411 . . . 4 (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
2524biimpa 296 . . 3 ((𝜑𝑁 < 𝑀) → (𝑀...𝑁) = ∅)
26 sum0 11553 . . . . 5 Σ𝑗 ∈ ∅ 𝐴 = 0
27 sum0 11553 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
2826, 27eqtr4i 2220 . . . 4 Σ𝑗 ∈ ∅ 𝐴 = Σ𝑘 ∈ ∅ 𝐵
29 sumeq1 11520 . . . 4 ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑗 ∈ ∅ 𝐴)
30 sumeq1 11520 . . . 4 ((𝑀...𝑁) = ∅ → Σ𝑘 ∈ (𝑀...𝑁)𝐵 = Σ𝑘 ∈ ∅ 𝐵)
3128, 29, 303eqtr4a 2255 . . 3 ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
3225, 31syl 14 . 2 ((𝜑𝑁 < 𝑀) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
33 zlelttric 9371 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁 < 𝑀))
341, 3, 33syl2anc 411 . 2 (𝜑 → (𝑀𝑁𝑁 < 𝑀))
3522, 32, 34mpjaodan 799 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  c0 3450   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879   + caddc 7882   < clt 8061  cle 8062  cmin 8197  cz 9326  cuz 9601  ...cfz 10083  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  fisum0diag2  11612  efaddlem  11839
  Copyright terms: Public domain W3C validator