| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fisumrev2 | GIF version | ||
| Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.) |
| Ref | Expression |
|---|---|
| fisumrev2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| fisumrev2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fsumrev2.1 | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| fsumrev2.2 | ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fisumrev2 | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fisumrev2.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) |
| 3 | fisumrev2.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ ℤ) |
| 5 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ 𝑁) | |
| 6 | eluz2 9624 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 7 | 2, 4, 5, 6 | syl3anbrc 1183 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 8 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
| 9 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
| 10 | 8, 9 | zaddcld 9469 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑀 + 𝑁) ∈ ℤ) |
| 11 | fsumrev2.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 12 | 11 | adantlr 477 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| 13 | fsumrev2.2 | . . . . 5 ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) | |
| 14 | 10, 8, 9, 12, 13 | fsumrev 11625 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵) |
| 15 | 8 | zcnd 9466 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℂ) |
| 16 | 9 | zcnd 9466 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℂ) |
| 17 | 15, 16 | pncand 8355 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
| 18 | 15, 16 | pncan2d 8356 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
| 19 | 17, 18 | oveq12d 5943 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁)) |
| 20 | 19 | sumeq1d 11548 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| 21 | 14, 20 | eqtrd 2229 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| 22 | 7, 21 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑀 ≤ 𝑁) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| 23 | fzn 10134 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) | |
| 24 | 1, 3, 23 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅)) |
| 25 | 24 | biimpa 296 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝑀...𝑁) = ∅) |
| 26 | sum0 11570 | . . . . 5 ⊢ Σ𝑗 ∈ ∅ 𝐴 = 0 | |
| 27 | sum0 11570 | . . . . 5 ⊢ Σ𝑘 ∈ ∅ 𝐵 = 0 | |
| 28 | 26, 27 | eqtr4i 2220 | . . . 4 ⊢ Σ𝑗 ∈ ∅ 𝐴 = Σ𝑘 ∈ ∅ 𝐵 |
| 29 | sumeq1 11537 | . . . 4 ⊢ ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑗 ∈ ∅ 𝐴) | |
| 30 | sumeq1 11537 | . . . 4 ⊢ ((𝑀...𝑁) = ∅ → Σ𝑘 ∈ (𝑀...𝑁)𝐵 = Σ𝑘 ∈ ∅ 𝐵) | |
| 31 | 28, 29, 30 | 3eqtr4a 2255 | . . 3 ⊢ ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| 32 | 25, 31 | syl 14 | . 2 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| 33 | zlelttric 9388 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ 𝑁 < 𝑀)) | |
| 34 | 1, 3, 33 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑀 ≤ 𝑁 ∨ 𝑁 < 𝑀)) |
| 35 | 22, 32, 34 | mpjaodan 799 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∅c0 3451 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 0cc0 7896 + caddc 7899 < clt 8078 ≤ cle 8079 − cmin 8214 ℤcz 9343 ℤ≥cuz 9618 ...cfz 10100 Σcsu 11535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 |
| This theorem is referenced by: fisum0diag2 11629 efaddlem 11856 |
| Copyright terms: Public domain | W3C validator |