Step | Hyp | Ref
| Expression |
1 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = 0 → (𝐴↑𝑗) = (𝐴↑0)) |
2 | 1 | fveq2d 5490 |
. . . . 5
⊢ (𝑗 = 0 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑0))) |
3 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = 0 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑0)) |
4 | 2, 3 | eqeq12d 2180 |
. . . 4
⊢ (𝑗 = 0 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))) |
5 | 4 | imbi2d 229 |
. . 3
⊢ (𝑗 = 0 → ((𝐴 ∈ ℂ → (abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0)))) |
6 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) |
7 | 6 | fveq2d 5490 |
. . . . 5
⊢ (𝑗 = 𝑘 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑𝑘))) |
8 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑘)) |
9 | 7, 8 | eqeq12d 2180 |
. . . 4
⊢ (𝑗 = 𝑘 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘))) |
10 | 9 | imbi2d 229 |
. . 3
⊢ (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)))) |
11 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) |
12 | 11 | fveq2d 5490 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑(𝑘 + 1)))) |
13 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑(𝑘 + 1))) |
14 | 12, 13 | eqeq12d 2180 |
. . . 4
⊢ (𝑗 = (𝑘 + 1) → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))) |
15 | 14 | imbi2d 229 |
. . 3
⊢ (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))))) |
16 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) |
17 | 16 | fveq2d 5490 |
. . . . 5
⊢ (𝑗 = 𝑁 → (abs‘(𝐴↑𝑗)) = (abs‘(𝐴↑𝑁))) |
18 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = 𝑁 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑁)) |
19 | 17, 18 | eqeq12d 2180 |
. . . 4
⊢ (𝑗 = 𝑁 → ((abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁))) |
20 | 19 | imbi2d 229 |
. . 3
⊢ (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (abs‘(𝐴↑𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)))) |
21 | | abs1 11014 |
. . . 4
⊢
(abs‘1) = 1 |
22 | | exp0 10459 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
23 | 22 | fveq2d 5490 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(abs‘(𝐴↑0)) =
(abs‘1)) |
24 | | abscl 10993 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) |
25 | 24 | recnd 7927 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℂ) |
26 | 25 | exp0d 10582 |
. . . 4
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴)↑0) =
1) |
27 | 21, 23, 26 | 3eqtr4a 2225 |
. . 3
⊢ (𝐴 ∈ ℂ →
(abs‘(𝐴↑0)) =
((abs‘𝐴)↑0)) |
28 | | oveq1 5849 |
. . . . . . . 8
⊢
((abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘) → ((abs‘(𝐴↑𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
29 | 28 | adantl 275 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘(𝐴↑𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
30 | | expp1 10462 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
31 | 30 | fveq2d 5490 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘(𝐴↑(𝑘 + 1))) = (abs‘((𝐴↑𝑘) · 𝐴))) |
32 | | expcl 10473 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
33 | | simpl 108 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
34 | | absmul 11011 |
. . . . . . . . . 10
⊢ (((𝐴↑𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐴↑𝑘) · 𝐴)) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
35 | 32, 33, 34 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘((𝐴↑𝑘) · 𝐴)) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
36 | 31, 35 | eqtrd 2198 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
37 | 36 | adantr 274 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴↑𝑘)) · (abs‘𝐴))) |
38 | | expp1 10462 |
. . . . . . . . 9
⊢
(((abs‘𝐴)
∈ ℂ ∧ 𝑘
∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
39 | 25, 38 | sylan 281 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
40 | 39 | adantr 274 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
41 | 29, 37, 40 | 3eqtr4d 2208 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
∧ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))) |
42 | 41 | exp31 362 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0
→ ((abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))))) |
43 | 42 | com12 30 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝐴 ∈ ℂ
→ ((abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))))) |
44 | 43 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝐴 ∈ ℂ
→ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) → (𝐴 ∈ ℂ → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))))) |
45 | 5, 10, 15, 20, 27, 44 | nn0ind 9305 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝐴 ∈ ℂ
→ (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁))) |
46 | 45 | impcom 124 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |