ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absexp GIF version

Theorem absexp 11590
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
Assertion
Ref Expression
absexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))

Proof of Theorem absexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6009 . . . . . 6 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
21fveq2d 5631 . . . . 5 (𝑗 = 0 → (abs‘(𝐴𝑗)) = (abs‘(𝐴↑0)))
3 oveq2 6009 . . . . 5 (𝑗 = 0 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑0))
42, 3eqeq12d 2244 . . . 4 (𝑗 = 0 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0)))
54imbi2d 230 . . 3 (𝑗 = 0 → ((𝐴 ∈ ℂ → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))))
6 oveq2 6009 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
76fveq2d 5631 . . . . 5 (𝑗 = 𝑘 → (abs‘(𝐴𝑗)) = (abs‘(𝐴𝑘)))
8 oveq2 6009 . . . . 5 (𝑗 = 𝑘 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑘))
97, 8eqeq12d 2244 . . . 4 (𝑗 = 𝑘 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)))
109imbi2d 230 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))))
11 oveq2 6009 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
1211fveq2d 5631 . . . . 5 (𝑗 = (𝑘 + 1) → (abs‘(𝐴𝑗)) = (abs‘(𝐴↑(𝑘 + 1))))
13 oveq2 6009 . . . . 5 (𝑗 = (𝑘 + 1) → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑(𝑘 + 1)))
1412, 13eqeq12d 2244 . . . 4 (𝑗 = (𝑘 + 1) → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))))
16 oveq2 6009 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1716fveq2d 5631 . . . . 5 (𝑗 = 𝑁 → (abs‘(𝐴𝑗)) = (abs‘(𝐴𝑁)))
18 oveq2 6009 . . . . 5 (𝑗 = 𝑁 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑁))
1917, 18eqeq12d 2244 . . . 4 (𝑗 = 𝑁 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
2019imbi2d 230 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))))
21 abs1 11583 . . . 4 (abs‘1) = 1
22 exp0 10765 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2322fveq2d 5631 . . . 4 (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = (abs‘1))
24 abscl 11562 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2524recnd 8175 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
2625exp0d 10889 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴)↑0) = 1)
2721, 23, 263eqtr4a 2288 . . 3 (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))
28 oveq1 6008 . . . . . . . 8 ((abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘) → ((abs‘(𝐴𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
2928adantl 277 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘(𝐴𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
30 expp1 10768 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3130fveq2d 5631 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = (abs‘((𝐴𝑘) · 𝐴)))
32 expcl 10779 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
33 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
34 absmul 11580 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐴𝑘) · 𝐴)) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3532, 33, 34syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) · 𝐴)) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3631, 35eqtrd 2262 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3736adantr 276 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
38 expp1 10768 . . . . . . . . 9 (((abs‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
3925, 38sylan 283 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
4039adantr 276 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
4129, 37, 403eqtr4d 2272 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
4241exp31 364 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 → ((abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))))
4342com12 30 . . . 4 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℂ → ((abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))))
4443a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → (𝐴 ∈ ℂ → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))))
455, 10, 15, 20, 27, 44nn0ind 9561 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℂ → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
4645impcom 125 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6001  cc 7997  0cc0 7999  1c1 8000   + caddc 8002   · cmul 8004  0cn0 9369  cexp 10760  abscabs 11508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510
This theorem is referenced by:  absexpzap  11591  abssq  11592  sqabs  11593  absexpd  11703  expcnvap0  12013  expcnv  12015  eftabs  12167  efaddlem  12185
  Copyright terms: Public domain W3C validator