ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absexp GIF version

Theorem absexp 11056
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
Assertion
Ref Expression
absexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))

Proof of Theorem absexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5873 . . . . . 6 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
21fveq2d 5511 . . . . 5 (𝑗 = 0 → (abs‘(𝐴𝑗)) = (abs‘(𝐴↑0)))
3 oveq2 5873 . . . . 5 (𝑗 = 0 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑0))
42, 3eqeq12d 2190 . . . 4 (𝑗 = 0 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0)))
54imbi2d 230 . . 3 (𝑗 = 0 → ((𝐴 ∈ ℂ → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))))
6 oveq2 5873 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
76fveq2d 5511 . . . . 5 (𝑗 = 𝑘 → (abs‘(𝐴𝑗)) = (abs‘(𝐴𝑘)))
8 oveq2 5873 . . . . 5 (𝑗 = 𝑘 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑘))
97, 8eqeq12d 2190 . . . 4 (𝑗 = 𝑘 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)))
109imbi2d 230 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))))
11 oveq2 5873 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
1211fveq2d 5511 . . . . 5 (𝑗 = (𝑘 + 1) → (abs‘(𝐴𝑗)) = (abs‘(𝐴↑(𝑘 + 1))))
13 oveq2 5873 . . . . 5 (𝑗 = (𝑘 + 1) → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑(𝑘 + 1)))
1412, 13eqeq12d 2190 . . . 4 (𝑗 = (𝑘 + 1) → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))))
16 oveq2 5873 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1716fveq2d 5511 . . . . 5 (𝑗 = 𝑁 → (abs‘(𝐴𝑗)) = (abs‘(𝐴𝑁)))
18 oveq2 5873 . . . . 5 (𝑗 = 𝑁 → ((abs‘𝐴)↑𝑗) = ((abs‘𝐴)↑𝑁))
1917, 18eqeq12d 2190 . . . 4 (𝑗 = 𝑁 → ((abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗) ↔ (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
2019imbi2d 230 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗)) ↔ (𝐴 ∈ ℂ → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))))
21 abs1 11049 . . . 4 (abs‘1) = 1
22 exp0 10494 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2322fveq2d 5511 . . . 4 (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = (abs‘1))
24 abscl 11028 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2524recnd 7960 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
2625exp0d 10617 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴)↑0) = 1)
2721, 23, 263eqtr4a 2234 . . 3 (𝐴 ∈ ℂ → (abs‘(𝐴↑0)) = ((abs‘𝐴)↑0))
28 oveq1 5872 . . . . . . . 8 ((abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘) → ((abs‘(𝐴𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
2928adantl 277 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘(𝐴𝑘)) · (abs‘𝐴)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
30 expp1 10497 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
3130fveq2d 5511 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = (abs‘((𝐴𝑘) · 𝐴)))
32 expcl 10508 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
33 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
34 absmul 11046 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐴𝑘) · 𝐴)) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3532, 33, 34syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) · 𝐴)) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3631, 35eqtrd 2208 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
3736adantr 276 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘(𝐴𝑘)) · (abs‘𝐴)))
38 expp1 10497 . . . . . . . . 9 (((abs‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
3925, 38sylan 283 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
4039adantr 276 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
4129, 37, 403eqtr4d 2218 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
4241exp31 364 . . . . 5 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 → ((abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))))
4342com12 30 . . . 4 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℂ → ((abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))))
4443a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘)) → (𝐴 ∈ ℂ → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))))
455, 10, 15, 20, 27, 44nn0ind 9340 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℂ → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
4645impcom 125 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  cfv 5208  (class class class)co 5865  cc 7784  0cc0 7786  1c1 7787   + caddc 7789   · cmul 7791  0cn0 9149  cexp 10489  abscabs 10974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-rp 9625  df-seqfrec 10416  df-exp 10490  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976
This theorem is referenced by:  absexpzap  11057  abssq  11058  sqabs  11059  absexpd  11169  expcnvap0  11478  expcnv  11480  eftabs  11632  efaddlem  11650
  Copyright terms: Public domain W3C validator