![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulg1 | GIF version |
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg1.b | ⊢ 𝐵 = (Base‘𝐺) |
mulg1.m | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulg1 | ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8995 | . . 3 ⊢ 1 ∈ ℕ | |
2 | mulg1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2193 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | mulg1.m | . . . 4 ⊢ · = (.g‘𝐺) | |
5 | eqid 2193 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
6 | 2, 3, 4, 5 | mulgnn 13199 | . . 3 ⊢ ((1 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1)) |
7 | 1, 6 | mpan 424 | . 2 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1)) |
8 | 1zzd 9347 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 1 ∈ ℤ) | |
9 | elnnuz 9632 | . . . 4 ⊢ (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ≥‘1)) | |
10 | fvconst2g 5773 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋) | |
11 | simpl 109 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → 𝑋 ∈ 𝐵) | |
12 | 10, 11 | eqeltrd 2270 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵) |
13 | 12 | elexd 2773 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
14 | 9, 13 | sylan2br 288 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ (ℤ≥‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
15 | simprl 529 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V) | |
16 | 2 | basmex 12680 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
17 | plusgslid 12733 | . . . . . . 7 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
18 | 17 | slotex 12648 | . . . . . 6 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
19 | 16, 18 | syl 14 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (+g‘𝐺) ∈ V) |
20 | 19 | adantr 276 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g‘𝐺) ∈ V) |
21 | simprr 531 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V) | |
22 | ovexg 5953 | . . . 4 ⊢ ((𝑢 ∈ V ∧ (+g‘𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g‘𝐺)𝑣) ∈ V) | |
23 | 15, 20, 21, 22 | syl3anc 1249 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g‘𝐺)𝑣) ∈ V) |
24 | 8, 14, 23 | seq3-1 10536 | . 2 ⊢ (𝑋 ∈ 𝐵 → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1) = ((ℕ × {𝑋})‘1)) |
25 | fvconst2g 5773 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 1 ∈ ℕ) → ((ℕ × {𝑋})‘1) = 𝑋) | |
26 | 1, 25 | mpan2 425 | . 2 ⊢ (𝑋 ∈ 𝐵 → ((ℕ × {𝑋})‘1) = 𝑋) |
27 | 7, 24, 26 | 3eqtrd 2230 | 1 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 {csn 3619 × cxp 4658 ‘cfv 5255 (class class class)co 5919 1c1 7875 ℕcn 8984 ℤ≥cuz 9595 seqcseq 10521 Basecbs 12621 +gcplusg 12698 .gcmg 13192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-seqfrec 10522 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-0g 12872 df-minusg 13079 df-mulg 13193 |
This theorem is referenced by: mulg2 13204 mulgnn0p1 13206 mulgm1 13215 mulgp1 13228 mulgnnass 13230 gsumfzconst 13414 gsumfzsnfd 13418 mulgrhm 14108 |
Copyright terms: Public domain | W3C validator |