ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulg1 GIF version

Theorem mulg1 13580
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
Assertion
Ref Expression
mulg1 (𝑋𝐵 → (1 · 𝑋) = 𝑋)

Proof of Theorem mulg1
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 9082 . . 3 1 ∈ ℕ
2 mulg1.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2207 . . . 4 (+g𝐺) = (+g𝐺)
4 mulg1.m . . . 4 · = (.g𝐺)
5 eqid 2207 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
62, 3, 4, 5mulgnn 13577 . . 3 ((1 ∈ ℕ ∧ 𝑋𝐵) → (1 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘1))
71, 6mpan 424 . 2 (𝑋𝐵 → (1 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘1))
8 1zzd 9434 . . 3 (𝑋𝐵 → 1 ∈ ℤ)
9 elnnuz 9720 . . . 4 (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ‘1))
10 fvconst2g 5821 . . . . . 6 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋)
11 simpl 109 . . . . . 6 ((𝑋𝐵𝑢 ∈ ℕ) → 𝑋𝐵)
1210, 11eqeltrd 2284 . . . . 5 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵)
1312elexd 2790 . . . 4 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V)
149, 13sylan2br 288 . . 3 ((𝑋𝐵𝑢 ∈ (ℤ‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V)
15 simprl 529 . . . 4 ((𝑋𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
162basmex 13006 . . . . . 6 (𝑋𝐵𝐺 ∈ V)
17 plusgslid 13059 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1817slotex 12974 . . . . . 6 (𝐺 ∈ V → (+g𝐺) ∈ V)
1916, 18syl 14 . . . . 5 (𝑋𝐵 → (+g𝐺) ∈ V)
2019adantr 276 . . . 4 ((𝑋𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g𝐺) ∈ V)
21 simprr 531 . . . 4 ((𝑋𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
22 ovexg 6001 . . . 4 ((𝑢 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g𝐺)𝑣) ∈ V)
2315, 20, 21, 22syl3anc 1250 . . 3 ((𝑋𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g𝐺)𝑣) ∈ V)
248, 14, 23seq3-1 10644 . 2 (𝑋𝐵 → (seq1((+g𝐺), (ℕ × {𝑋}))‘1) = ((ℕ × {𝑋})‘1))
25 fvconst2g 5821 . . 3 ((𝑋𝐵 ∧ 1 ∈ ℕ) → ((ℕ × {𝑋})‘1) = 𝑋)
261, 25mpan2 425 . 2 (𝑋𝐵 → ((ℕ × {𝑋})‘1) = 𝑋)
277, 24, 263eqtrd 2244 1 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  Vcvv 2776  {csn 3643   × cxp 4691  cfv 5290  (class class class)co 5967  1c1 7961  cn 9071  cuz 9683  seqcseq 10629  Basecbs 12947  +gcplusg 13024  .gcmg 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-minusg 13451  df-mulg 13571
This theorem is referenced by:  mulg2  13582  mulgnn0p1  13584  mulgm1  13593  mulgp1  13606  mulgnnass  13608  gsumfzconst  13792  gsumfzsnfd  13796  mulgrhm  14486
  Copyright terms: Public domain W3C validator