| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulg1 | GIF version | ||
| Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulg1.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulg1.m | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulg1 | ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9046 | . . 3 ⊢ 1 ∈ ℕ | |
| 2 | mulg1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2204 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | mulg1.m | . . . 4 ⊢ · = (.g‘𝐺) | |
| 5 | eqid 2204 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 6 | 2, 3, 4, 5 | mulgnn 13404 | . . 3 ⊢ ((1 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1)) |
| 7 | 1, 6 | mpan 424 | . 2 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1)) |
| 8 | 1zzd 9398 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 1 ∈ ℤ) | |
| 9 | elnnuz 9684 | . . . 4 ⊢ (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ≥‘1)) | |
| 10 | fvconst2g 5797 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋) | |
| 11 | simpl 109 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → 𝑋 ∈ 𝐵) | |
| 12 | 10, 11 | eqeltrd 2281 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵) |
| 13 | 12 | elexd 2784 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
| 14 | 9, 13 | sylan2br 288 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ (ℤ≥‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
| 15 | simprl 529 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V) | |
| 16 | 2 | basmex 12833 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
| 17 | plusgslid 12886 | . . . . . . 7 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 18 | 17 | slotex 12801 | . . . . . 6 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
| 19 | 16, 18 | syl 14 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (+g‘𝐺) ∈ V) |
| 20 | 19 | adantr 276 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g‘𝐺) ∈ V) |
| 21 | simprr 531 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V) | |
| 22 | ovexg 5977 | . . . 4 ⊢ ((𝑢 ∈ V ∧ (+g‘𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g‘𝐺)𝑣) ∈ V) | |
| 23 | 15, 20, 21, 22 | syl3anc 1249 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g‘𝐺)𝑣) ∈ V) |
| 24 | 8, 14, 23 | seq3-1 10605 | . 2 ⊢ (𝑋 ∈ 𝐵 → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1) = ((ℕ × {𝑋})‘1)) |
| 25 | fvconst2g 5797 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 1 ∈ ℕ) → ((ℕ × {𝑋})‘1) = 𝑋) | |
| 26 | 1, 25 | mpan2 425 | . 2 ⊢ (𝑋 ∈ 𝐵 → ((ℕ × {𝑋})‘1) = 𝑋) |
| 27 | 7, 24, 26 | 3eqtrd 2241 | 1 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 Vcvv 2771 {csn 3632 × cxp 4672 ‘cfv 5270 (class class class)co 5943 1c1 7925 ℕcn 9035 ℤ≥cuz 9647 seqcseq 10590 Basecbs 12774 +gcplusg 12851 .gcmg 13397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 df-seqfrec 10591 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-minusg 13278 df-mulg 13398 |
| This theorem is referenced by: mulg2 13409 mulgnn0p1 13411 mulgm1 13420 mulgp1 13433 mulgnnass 13435 gsumfzconst 13619 gsumfzsnfd 13623 mulgrhm 14313 |
| Copyright terms: Public domain | W3C validator |