| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulg1 | GIF version | ||
| Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulg1.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulg1.m | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulg1 | ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9082 | . . 3 ⊢ 1 ∈ ℕ | |
| 2 | mulg1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2207 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | mulg1.m | . . . 4 ⊢ · = (.g‘𝐺) | |
| 5 | eqid 2207 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 6 | 2, 3, 4, 5 | mulgnn 13577 | . . 3 ⊢ ((1 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1)) |
| 7 | 1, 6 | mpan 424 | . 2 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1)) |
| 8 | 1zzd 9434 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 1 ∈ ℤ) | |
| 9 | elnnuz 9720 | . . . 4 ⊢ (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ≥‘1)) | |
| 10 | fvconst2g 5821 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋) | |
| 11 | simpl 109 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → 𝑋 ∈ 𝐵) | |
| 12 | 10, 11 | eqeltrd 2284 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵) |
| 13 | 12 | elexd 2790 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
| 14 | 9, 13 | sylan2br 288 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ (ℤ≥‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
| 15 | simprl 529 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V) | |
| 16 | 2 | basmex 13006 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
| 17 | plusgslid 13059 | . . . . . . 7 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 18 | 17 | slotex 12974 | . . . . . 6 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
| 19 | 16, 18 | syl 14 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (+g‘𝐺) ∈ V) |
| 20 | 19 | adantr 276 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g‘𝐺) ∈ V) |
| 21 | simprr 531 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V) | |
| 22 | ovexg 6001 | . . . 4 ⊢ ((𝑢 ∈ V ∧ (+g‘𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g‘𝐺)𝑣) ∈ V) | |
| 23 | 15, 20, 21, 22 | syl3anc 1250 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g‘𝐺)𝑣) ∈ V) |
| 24 | 8, 14, 23 | seq3-1 10644 | . 2 ⊢ (𝑋 ∈ 𝐵 → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1) = ((ℕ × {𝑋})‘1)) |
| 25 | fvconst2g 5821 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 1 ∈ ℕ) → ((ℕ × {𝑋})‘1) = 𝑋) | |
| 26 | 1, 25 | mpan2 425 | . 2 ⊢ (𝑋 ∈ 𝐵 → ((ℕ × {𝑋})‘1) = 𝑋) |
| 27 | 7, 24, 26 | 3eqtrd 2244 | 1 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 {csn 3643 × cxp 4691 ‘cfv 5290 (class class class)co 5967 1c1 7961 ℕcn 9071 ℤ≥cuz 9683 seqcseq 10629 Basecbs 12947 +gcplusg 13024 .gcmg 13570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-minusg 13451 df-mulg 13571 |
| This theorem is referenced by: mulg2 13582 mulgnn0p1 13584 mulgm1 13593 mulgp1 13606 mulgnnass 13608 gsumfzconst 13792 gsumfzsnfd 13796 mulgrhm 14486 |
| Copyright terms: Public domain | W3C validator |