ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulg1 GIF version

Theorem mulg1 13259
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
Assertion
Ref Expression
mulg1 (𝑋𝐵 → (1 · 𝑋) = 𝑋)

Proof of Theorem mulg1
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 9001 . . 3 1 ∈ ℕ
2 mulg1.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2196 . . . 4 (+g𝐺) = (+g𝐺)
4 mulg1.m . . . 4 · = (.g𝐺)
5 eqid 2196 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
62, 3, 4, 5mulgnn 13256 . . 3 ((1 ∈ ℕ ∧ 𝑋𝐵) → (1 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘1))
71, 6mpan 424 . 2 (𝑋𝐵 → (1 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘1))
8 1zzd 9353 . . 3 (𝑋𝐵 → 1 ∈ ℤ)
9 elnnuz 9638 . . . 4 (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ‘1))
10 fvconst2g 5776 . . . . . 6 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋)
11 simpl 109 . . . . . 6 ((𝑋𝐵𝑢 ∈ ℕ) → 𝑋𝐵)
1210, 11eqeltrd 2273 . . . . 5 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵)
1312elexd 2776 . . . 4 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V)
149, 13sylan2br 288 . . 3 ((𝑋𝐵𝑢 ∈ (ℤ‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V)
15 simprl 529 . . . 4 ((𝑋𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
162basmex 12737 . . . . . 6 (𝑋𝐵𝐺 ∈ V)
17 plusgslid 12790 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1817slotex 12705 . . . . . 6 (𝐺 ∈ V → (+g𝐺) ∈ V)
1916, 18syl 14 . . . . 5 (𝑋𝐵 → (+g𝐺) ∈ V)
2019adantr 276 . . . 4 ((𝑋𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g𝐺) ∈ V)
21 simprr 531 . . . 4 ((𝑋𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
22 ovexg 5956 . . . 4 ((𝑢 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g𝐺)𝑣) ∈ V)
2315, 20, 21, 22syl3anc 1249 . . 3 ((𝑋𝐵 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g𝐺)𝑣) ∈ V)
248, 14, 23seq3-1 10554 . 2 (𝑋𝐵 → (seq1((+g𝐺), (ℕ × {𝑋}))‘1) = ((ℕ × {𝑋})‘1))
25 fvconst2g 5776 . . 3 ((𝑋𝐵 ∧ 1 ∈ ℕ) → ((ℕ × {𝑋})‘1) = 𝑋)
261, 25mpan2 425 . 2 (𝑋𝐵 → ((ℕ × {𝑋})‘1) = 𝑋)
277, 24, 263eqtrd 2233 1 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  {csn 3622   × cxp 4661  cfv 5258  (class class class)co 5922  1c1 7880  cn 8990  cuz 9601  seqcseq 10539  Basecbs 12678  +gcplusg 12755  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-minusg 13136  df-mulg 13250
This theorem is referenced by:  mulg2  13261  mulgnn0p1  13263  mulgm1  13272  mulgp1  13285  mulgnnass  13287  gsumfzconst  13471  gsumfzsnfd  13475  mulgrhm  14165
  Copyright terms: Public domain W3C validator