ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnp1 GIF version

Theorem mulgnnp1 12842
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
mulgnnp1.p + = (+g𝐺)
Assertion
Ref Expression
mulgnnp1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))

Proof of Theorem mulgnnp1
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ ℕ)
2 nnuz 9526 . . . . 5 ℕ = (ℤ‘1)
31, 2eleqtrdi 2264 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ‘1))
4 simplr 526 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑋𝐵)
5 simpr 109 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ (ℤ‘1))
65, 2eleqtrrdi 2265 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℕ)
7 fvconst2g 5714 . . . . . . 7 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋)
8 simpl 108 . . . . . . 7 ((𝑋𝐵𝑢 ∈ ℕ) → 𝑋𝐵)
97, 8eqeltrd 2248 . . . . . 6 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵)
109elexd 2744 . . . . 5 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V)
114, 6, 10syl2anc 409 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑢 ∈ (ℤ‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V)
12 simprl 527 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
13 mulg1.b . . . . . . . 8 𝐵 = (Base‘𝐺)
1413basmex 12478 . . . . . . 7 (𝑋𝐵𝐺 ∈ V)
15 mulgnnp1.p . . . . . . . 8 + = (+g𝐺)
16 plusgslid 12517 . . . . . . . . 9 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1716slotex 12447 . . . . . . . 8 (𝐺 ∈ V → (+g𝐺) ∈ V)
1815, 17eqeltrid 2258 . . . . . . 7 (𝐺 ∈ V → + ∈ V)
1914, 18syl 14 . . . . . 6 (𝑋𝐵+ ∈ V)
2019ad2antlr 487 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V)
21 simprr 528 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
22 ovexg 5891 . . . . 5 ((𝑢 ∈ V ∧ + ∈ V ∧ 𝑣 ∈ V) → (𝑢 + 𝑣) ∈ V)
2312, 20, 21, 22syl3anc 1234 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V)
243, 11, 23seq3p1 10422 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))))
25 id 19 . . . . 5 (𝑋𝐵𝑋𝐵)
26 peano2nn 8894 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
27 fvconst2g 5714 . . . . 5 ((𝑋𝐵 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋)
2825, 26, 27syl2anr 288 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋)
2928oveq2d 5873 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
3024, 29eqtrd 2204 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
31 mulg1.m . . . 4 · = (.g𝐺)
32 eqid 2171 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
3313, 15, 31, 32mulgnn 12840 . . 3 (((𝑁 + 1) ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)))
3426, 33sylan 281 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)))
3513, 15, 31, 32mulgnn 12840 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
3635oveq1d 5872 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
3730, 34, 363eqtr4d 2214 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1349  wcel 2142  Vcvv 2731  {csn 3584   × cxp 4610  cfv 5200  (class class class)co 5857  1c1 7779   + caddc 7781  cn 8882  cuz 9491  seqcseq 10405  Basecbs 12420  +gcplusg 12484  .gcmg 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-nul 4116  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-iinf 4573  ax-cnex 7869  ax-resscn 7870  ax-1cn 7871  ax-1re 7872  ax-icn 7873  ax-addcl 7874  ax-addrcl 7875  ax-mulcl 7876  ax-addcom 7878  ax-addass 7880  ax-distr 7882  ax-i2m1 7883  ax-0lt1 7884  ax-0id 7886  ax-rnegex 7887  ax-cnre 7889  ax-pre-ltirr 7890  ax-pre-ltwlin 7891  ax-pre-lttrn 7892  ax-pre-ltadd 7894
This theorem depends on definitions:  df-bi 116  df-dc 831  df-3or 975  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-nel 2437  df-ral 2454  df-rex 2455  df-reu 2456  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-nul 3416  df-if 3528  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-tr 4089  df-id 4279  df-iord 4352  df-on 4354  df-ilim 4355  df-suc 4357  df-iom 4576  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-recs 6288  df-frec 6374  df-pnf 7960  df-mnf 7961  df-xr 7962  df-ltxr 7963  df-le 7964  df-sub 8096  df-neg 8097  df-inn 8883  df-2 8941  df-n0 9140  df-z 9217  df-uz 9492  df-seqfrec 10406  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12620  df-minusg 12734  df-mulg 12835
This theorem is referenced by:  mulg2  12843  mulgnn0p1  12845  mulgnnass  12868
  Copyright terms: Public domain W3C validator