| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnnp1 | GIF version | ||
| Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulg1.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulg1.m | ⊢ · = (.g‘𝐺) |
| mulgnnp1.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgnnp1 | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ ℕ) | |
| 2 | nnuz 9754 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 3 | 1, 2 | eleqtrdi 2322 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ (ℤ≥‘1)) |
| 4 | simplr 528 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → 𝑋 ∈ 𝐵) | |
| 5 | simpr 110 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → 𝑢 ∈ (ℤ≥‘1)) | |
| 6 | 5, 2 | eleqtrrdi 2323 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → 𝑢 ∈ ℕ) |
| 7 | fvconst2g 5852 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋) | |
| 8 | simpl 109 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → 𝑋 ∈ 𝐵) | |
| 9 | 7, 8 | eqeltrd 2306 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵) |
| 10 | 9 | elexd 2813 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
| 11 | 4, 6, 10 | syl2anc 411 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
| 12 | simprl 529 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V) | |
| 13 | mulg1.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
| 14 | 13 | basmex 13087 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
| 15 | mulgnnp1.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
| 16 | plusgslid 13140 | . . . . . . . . 9 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 17 | 16 | slotex 13054 | . . . . . . . 8 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
| 18 | 15, 17 | eqeltrid 2316 | . . . . . . 7 ⊢ (𝐺 ∈ V → + ∈ V) |
| 19 | 14, 18 | syl 14 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → + ∈ V) |
| 20 | 19 | ad2antlr 489 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V) |
| 21 | simprr 531 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V) | |
| 22 | ovexg 6034 | . . . . 5 ⊢ ((𝑢 ∈ V ∧ + ∈ V ∧ 𝑣 ∈ V) → (𝑢 + 𝑣) ∈ V) | |
| 23 | 12, 20, 21, 22 | syl3anc 1271 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V) |
| 24 | 3, 11, 23 | seq3p1 10682 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1)))) |
| 25 | id 19 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 26 | peano2nn 9118 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 27 | fvconst2g 5852 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋) | |
| 28 | 25, 26, 27 | syl2anr 290 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋) |
| 29 | 28 | oveq2d 6016 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
| 30 | 24, 29 | eqtrd 2262 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
| 31 | mulg1.m | . . . 4 ⊢ · = (.g‘𝐺) | |
| 32 | eqid 2229 | . . . 4 ⊢ seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋})) | |
| 33 | 13, 15, 31, 32 | mulgnn 13658 | . . 3 ⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1))) |
| 34 | 26, 33 | sylan 283 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1))) |
| 35 | 13, 15, 31, 32 | mulgnn 13658 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
| 36 | 35 | oveq1d 6015 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 · 𝑋) + 𝑋) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
| 37 | 30, 34, 36 | 3eqtr4d 2272 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 × cxp 4716 ‘cfv 5317 (class class class)co 6000 1c1 7996 + caddc 7998 ℕcn 9106 ℤ≥cuz 9718 seqcseq 10664 Basecbs 13027 +gcplusg 13105 .gcmg 13651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-minusg 13532 df-mulg 13652 |
| This theorem is referenced by: mulg2 13663 mulgnn0p1 13665 mulgnnass 13689 gsumfzconst 13873 |
| Copyright terms: Public domain | W3C validator |