![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulgnnp1 | GIF version |
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg1.b | ⊢ 𝐵 = (Base‘𝐺) |
mulg1.m | ⊢ · = (.g‘𝐺) |
mulgnnp1.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mulgnnp1 | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ ℕ) | |
2 | nnuz 9595 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
3 | 1, 2 | eleqtrdi 2282 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ (ℤ≥‘1)) |
4 | simplr 528 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → 𝑋 ∈ 𝐵) | |
5 | simpr 110 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → 𝑢 ∈ (ℤ≥‘1)) | |
6 | 5, 2 | eleqtrrdi 2283 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → 𝑢 ∈ ℕ) |
7 | fvconst2g 5751 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋) | |
8 | simpl 109 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → 𝑋 ∈ 𝐵) | |
9 | 7, 8 | eqeltrd 2266 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵) |
10 | 9 | elexd 2765 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
11 | 4, 6, 10 | syl2anc 411 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
12 | simprl 529 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V) | |
13 | mulg1.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
14 | 13 | basmex 12574 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
15 | mulgnnp1.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
16 | plusgslid 12627 | . . . . . . . . 9 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
17 | 16 | slotex 12542 | . . . . . . . 8 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
18 | 15, 17 | eqeltrid 2276 | . . . . . . 7 ⊢ (𝐺 ∈ V → + ∈ V) |
19 | 14, 18 | syl 14 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → + ∈ V) |
20 | 19 | ad2antlr 489 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V) |
21 | simprr 531 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V) | |
22 | ovexg 5931 | . . . . 5 ⊢ ((𝑢 ∈ V ∧ + ∈ V ∧ 𝑣 ∈ V) → (𝑢 + 𝑣) ∈ V) | |
23 | 12, 20, 21, 22 | syl3anc 1249 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V) |
24 | 3, 11, 23 | seq3p1 10495 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1)))) |
25 | id 19 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
26 | peano2nn 8962 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
27 | fvconst2g 5751 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋) | |
28 | 25, 26, 27 | syl2anr 290 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋) |
29 | 28 | oveq2d 5913 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
30 | 24, 29 | eqtrd 2222 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
31 | mulg1.m | . . . 4 ⊢ · = (.g‘𝐺) | |
32 | eqid 2189 | . . . 4 ⊢ seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋})) | |
33 | 13, 15, 31, 32 | mulgnn 13083 | . . 3 ⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1))) |
34 | 26, 33 | sylan 283 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1))) |
35 | 13, 15, 31, 32 | mulgnn 13083 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
36 | 35 | oveq1d 5912 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 · 𝑋) + 𝑋) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
37 | 30, 34, 36 | 3eqtr4d 2232 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 Vcvv 2752 {csn 3607 × cxp 4642 ‘cfv 5235 (class class class)co 5897 1c1 7843 + caddc 7845 ℕcn 8950 ℤ≥cuz 9559 seqcseq 10478 Basecbs 12515 +gcplusg 12592 .gcmg 13076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-frec 6417 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-inn 8951 df-2 9009 df-n0 9208 df-z 9285 df-uz 9560 df-seqfrec 10479 df-ndx 12518 df-slot 12519 df-base 12521 df-plusg 12605 df-0g 12766 df-minusg 12964 df-mulg 13077 |
This theorem is referenced by: mulg2 13088 mulgnn0p1 13090 mulgnnass 13114 |
Copyright terms: Public domain | W3C validator |