ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnnp1 GIF version

Theorem mulgnnp1 13200
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
mulgnnp1.p + = (+g𝐺)
Assertion
Ref Expression
mulgnnp1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))

Proof of Theorem mulgnnp1
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ ℕ)
2 nnuz 9628 . . . . 5 ℕ = (ℤ‘1)
31, 2eleqtrdi 2286 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ‘1))
4 simplr 528 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑋𝐵)
5 simpr 110 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ (ℤ‘1))
65, 2eleqtrrdi 2287 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℕ)
7 fvconst2g 5772 . . . . . . 7 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋)
8 simpl 109 . . . . . . 7 ((𝑋𝐵𝑢 ∈ ℕ) → 𝑋𝐵)
97, 8eqeltrd 2270 . . . . . 6 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵)
109elexd 2773 . . . . 5 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V)
114, 6, 10syl2anc 411 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ 𝑢 ∈ (ℤ‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V)
12 simprl 529 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
13 mulg1.b . . . . . . . 8 𝐵 = (Base‘𝐺)
1413basmex 12677 . . . . . . 7 (𝑋𝐵𝐺 ∈ V)
15 mulgnnp1.p . . . . . . . 8 + = (+g𝐺)
16 plusgslid 12730 . . . . . . . . 9 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1716slotex 12645 . . . . . . . 8 (𝐺 ∈ V → (+g𝐺) ∈ V)
1815, 17eqeltrid 2280 . . . . . . 7 (𝐺 ∈ V → + ∈ V)
1914, 18syl 14 . . . . . 6 (𝑋𝐵+ ∈ V)
2019ad2antlr 489 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V)
21 simprr 531 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
22 ovexg 5952 . . . . 5 ((𝑢 ∈ V ∧ + ∈ V ∧ 𝑣 ∈ V) → (𝑢 + 𝑣) ∈ V)
2312, 20, 21, 22syl3anc 1249 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑋𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V)
243, 11, 23seq3p1 10536 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))))
25 id 19 . . . . 5 (𝑋𝐵𝑋𝐵)
26 peano2nn 8994 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
27 fvconst2g 5772 . . . . 5 ((𝑋𝐵 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋)
2825, 26, 27syl2anr 290 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋)
2928oveq2d 5934 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
3024, 29eqtrd 2226 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
31 mulg1.m . . . 4 · = (.g𝐺)
32 eqid 2193 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
3313, 15, 31, 32mulgnn 13196 . . 3 (((𝑁 + 1) ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)))
3426, 33sylan 283 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)))
3513, 15, 31, 32mulgnn 13196 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
3635oveq1d 5933 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
3730, 34, 363eqtr4d 2236 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618   × cxp 4657  cfv 5254  (class class class)co 5918  1c1 7873   + caddc 7875  cn 8982  cuz 9592  seqcseq 10518  Basecbs 12618  +gcplusg 12695  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulg2  13201  mulgnn0p1  13203  mulgnnass  13227  gsumfzconst  13411
  Copyright terms: Public domain W3C validator