![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulgnnp1 | GIF version |
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg1.b | ⊢ 𝐵 = (Base‘𝐺) |
mulg1.m | ⊢ · = (.g‘𝐺) |
mulgnnp1.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mulgnnp1 | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ ℕ) | |
2 | nnuz 9539 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
3 | 1, 2 | eleqtrdi 2270 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ (ℤ≥‘1)) |
4 | simplr 528 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → 𝑋 ∈ 𝐵) | |
5 | simpr 110 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → 𝑢 ∈ (ℤ≥‘1)) | |
6 | 5, 2 | eleqtrrdi 2271 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → 𝑢 ∈ ℕ) |
7 | fvconst2g 5725 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋) | |
8 | simpl 109 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → 𝑋 ∈ 𝐵) | |
9 | 7, 8 | eqeltrd 2254 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵) |
10 | 9 | elexd 2750 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
11 | 4, 6, 10 | syl2anc 411 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ 𝑢 ∈ (ℤ≥‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V) |
12 | simprl 529 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V) | |
13 | mulg1.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
14 | 13 | basmex 12490 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
15 | mulgnnp1.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
16 | plusgslid 12538 | . . . . . . . . 9 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
17 | 16 | slotex 12459 | . . . . . . . 8 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
18 | 15, 17 | eqeltrid 2264 | . . . . . . 7 ⊢ (𝐺 ∈ V → + ∈ V) |
19 | 14, 18 | syl 14 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → + ∈ V) |
20 | 19 | ad2antlr 489 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V) |
21 | simprr 531 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V) | |
22 | ovexg 5902 | . . . . 5 ⊢ ((𝑢 ∈ V ∧ + ∈ V ∧ 𝑣 ∈ V) → (𝑢 + 𝑣) ∈ V) | |
23 | 12, 20, 21, 22 | syl3anc 1238 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V) |
24 | 3, 11, 23 | seq3p1 10435 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1)))) |
25 | id 19 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
26 | peano2nn 8907 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
27 | fvconst2g 5725 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋) | |
28 | 25, 26, 27 | syl2anr 290 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋) |
29 | 28 | oveq2d 5884 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
30 | 24, 29 | eqtrd 2210 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
31 | mulg1.m | . . . 4 ⊢ · = (.g‘𝐺) | |
32 | eqid 2177 | . . . 4 ⊢ seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋})) | |
33 | 13, 15, 31, 32 | mulgnn 12865 | . . 3 ⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1))) |
34 | 26, 33 | sylan 283 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1))) |
35 | 13, 15, 31, 32 | mulgnn 12865 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
36 | 35 | oveq1d 5883 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 · 𝑋) + 𝑋) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
37 | 30, 34, 36 | 3eqtr4d 2220 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2737 {csn 3591 × cxp 4620 ‘cfv 5211 (class class class)co 5868 1c1 7790 + caddc 7792 ℕcn 8895 ℤ≥cuz 9504 seqcseq 10418 Basecbs 12432 +gcplusg 12505 .gcmg 12859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4205 ax-un 4429 ax-setind 4532 ax-iinf 4583 ax-cnex 7880 ax-resscn 7881 ax-1cn 7882 ax-1re 7883 ax-icn 7884 ax-addcl 7885 ax-addrcl 7886 ax-mulcl 7887 ax-addcom 7889 ax-addass 7891 ax-distr 7893 ax-i2m1 7894 ax-0lt1 7895 ax-0id 7897 ax-rnegex 7898 ax-cnre 7900 ax-pre-ltirr 7901 ax-pre-ltwlin 7902 ax-pre-lttrn 7903 ax-pre-ltadd 7905 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4289 df-iord 4362 df-on 4364 df-ilim 4365 df-suc 4367 df-iom 4586 df-xp 4628 df-rel 4629 df-cnv 4630 df-co 4631 df-dm 4632 df-rn 4633 df-res 4634 df-ima 4635 df-iota 5173 df-fun 5213 df-fn 5214 df-f 5215 df-f1 5216 df-fo 5217 df-f1o 5218 df-fv 5219 df-riota 5824 df-ov 5871 df-oprab 5872 df-mpo 5873 df-1st 6134 df-2nd 6135 df-recs 6299 df-frec 6385 df-pnf 7971 df-mnf 7972 df-xr 7973 df-ltxr 7974 df-le 7975 df-sub 8107 df-neg 8108 df-inn 8896 df-2 8954 df-n0 9153 df-z 9230 df-uz 9505 df-seqfrec 10419 df-ndx 12435 df-slot 12436 df-base 12438 df-plusg 12518 df-0g 12642 df-minusg 12758 df-mulg 12860 |
This theorem is referenced by: mulg2 12868 mulgnn0p1 12870 mulgnnass 12893 |
Copyright terms: Public domain | W3C validator |