ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrecl GIF version

Theorem nnrecl 8641
Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.)
Assertion
Ref Expression
nnrecl ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
Distinct variable group:   𝐴,𝑛

Proof of Theorem nnrecl
StepHypRef Expression
1 simpl 107 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
2 gt0ap0 8078 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
31, 2rerecclapd 8272 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
4 arch 8640 . . 3 ((1 / 𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛)
53, 4syl 14 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛)
6 recgt0 8283 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
73, 6jca 300 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) ∈ ℝ ∧ 0 < (1 / 𝐴)))
8 nnre 8401 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9 nngt0 8419 . . . . . 6 (𝑛 ∈ ℕ → 0 < 𝑛)
108, 9jca 300 . . . . 5 (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
11 ltrec 8316 . . . . 5 ((((1 / 𝐴) ∈ ℝ ∧ 0 < (1 / 𝐴)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < (1 / (1 / 𝐴))))
127, 10, 11syl2an 283 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < (1 / (1 / 𝐴))))
13 recn 7454 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1413adantr 270 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
1514, 2recrecapd 8226 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 / 𝐴)) = 𝐴)
1615breq2d 3849 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝑛) < (1 / (1 / 𝐴)) ↔ (1 / 𝑛) < 𝐴))
1716adantr 270 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < (1 / (1 / 𝐴)) ↔ (1 / 𝑛) < 𝐴))
1812, 17bitrd 186 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < 𝐴))
1918rexbidva 2377 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛 ↔ ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴))
205, 19mpbid 145 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1438  wrex 2360   class class class wbr 3837  (class class class)co 5634  cc 7327  cr 7328  0cc0 7329  1c1 7330   < clt 7501   / cdiv 8113  cn 8394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395
This theorem is referenced by:  qbtwnre  9633
  Copyright terms: Public domain W3C validator