Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnrecl | GIF version |
Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.) |
Ref | Expression |
---|---|
nnrecl | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) | |
2 | gt0ap0 8545 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
3 | 1, 2 | rerecclapd 8751 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
4 | arch 9132 | . . 3 ⊢ ((1 / 𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛) |
6 | recgt0 8766 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) | |
7 | 3, 6 | jca 304 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) ∈ ℝ ∧ 0 < (1 / 𝐴))) |
8 | nnre 8885 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
9 | nngt0 8903 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → 0 < 𝑛) | |
10 | 8, 9 | jca 304 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛)) |
11 | ltrec 8799 | . . . . 5 ⊢ ((((1 / 𝐴) ∈ ℝ ∧ 0 < (1 / 𝐴)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < (1 / (1 / 𝐴)))) | |
12 | 7, 10, 11 | syl2an 287 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < (1 / (1 / 𝐴)))) |
13 | recn 7907 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
14 | 13 | adantr 274 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
15 | 14, 2 | recrecapd 8702 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 / 𝐴)) = 𝐴) |
16 | 15 | breq2d 4001 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝑛) < (1 / (1 / 𝐴)) ↔ (1 / 𝑛) < 𝐴)) |
17 | 16 | adantr 274 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < (1 / (1 / 𝐴)) ↔ (1 / 𝑛) < 𝐴)) |
18 | 12, 17 | bitrd 187 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < 𝐴)) |
19 | 18 | rexbidva 2467 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛 ↔ ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)) |
20 | 5, 19 | mpbid 146 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ∃wrex 2449 class class class wbr 3989 (class class class)co 5853 ℂcc 7772 ℝcr 7773 0cc0 7774 1c1 7775 < clt 7954 / cdiv 8589 ℕcn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 |
This theorem is referenced by: qbtwnre 10213 trilpolemlt1 14073 |
Copyright terms: Public domain | W3C validator |