Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnrecl | GIF version |
Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.) |
Ref | Expression |
---|---|
nnrecl | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) | |
2 | gt0ap0 8484 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
3 | 1, 2 | rerecclapd 8689 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
4 | arch 9070 | . . 3 ⊢ ((1 / 𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛) |
6 | recgt0 8704 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) | |
7 | 3, 6 | jca 304 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) ∈ ℝ ∧ 0 < (1 / 𝐴))) |
8 | nnre 8823 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
9 | nngt0 8841 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → 0 < 𝑛) | |
10 | 8, 9 | jca 304 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛)) |
11 | ltrec 8737 | . . . . 5 ⊢ ((((1 / 𝐴) ∈ ℝ ∧ 0 < (1 / 𝐴)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < (1 / (1 / 𝐴)))) | |
12 | 7, 10, 11 | syl2an 287 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < (1 / (1 / 𝐴)))) |
13 | recn 7848 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
14 | 13 | adantr 274 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
15 | 14, 2 | recrecapd 8641 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 / 𝐴)) = 𝐴) |
16 | 15 | breq2d 3977 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝑛) < (1 / (1 / 𝐴)) ↔ (1 / 𝑛) < 𝐴)) |
17 | 16 | adantr 274 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < (1 / (1 / 𝐴)) ↔ (1 / 𝑛) < 𝐴)) |
18 | 12, 17 | bitrd 187 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < 𝐴)) |
19 | 18 | rexbidva 2454 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛 ↔ ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)) |
20 | 5, 19 | mpbid 146 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2128 ∃wrex 2436 class class class wbr 3965 (class class class)co 5818 ℂcc 7713 ℝcr 7714 0cc0 7715 1c1 7716 < clt 7895 / cdiv 8528 ℕcn 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 ax-arch 7834 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 |
This theorem is referenced by: qbtwnre 10138 trilpolemlt1 13574 |
Copyright terms: Public domain | W3C validator |