ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bccmpl GIF version

Theorem bccmpl 10700
Description: "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.)
Assertion
Ref Expression
bccmpl ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))

Proof of Theorem bccmpl
StepHypRef Expression
1 bcval2 10696 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
2 fznn0sub2 10096 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
3 bcval2 10696 . . . . . 6 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
42, 3syl 14 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
5 elfznn0 10082 . . . . . . . . . . 11 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
65faccld 10682 . . . . . . . . . 10 ((𝑁𝐾) ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
76nncnd 8904 . . . . . . . . 9 ((𝑁𝐾) ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
82, 7syl 14 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
9 elfznn0 10082 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
109faccld 10682 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℕ)
1110nncnd 8904 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℂ)
128, 11mulcomd 7953 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) = ((!‘𝐾) · (!‘(𝑁𝐾))))
13 elfz3nn0 10083 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
14 elfzelz 9993 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
15 nn0cn 9157 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
16 zcn 9229 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
17 nncan 8160 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 − (𝑁𝐾)) = 𝐾)
1815, 16, 17syl2an 289 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁 − (𝑁𝐾)) = 𝐾)
1913, 14, 18syl2anc 411 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (𝑁 − (𝑁𝐾)) = 𝐾)
2019fveq2d 5511 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘(𝑁 − (𝑁𝐾))) = (!‘𝐾))
2120oveq1d 5880 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾))) = ((!‘𝐾) · (!‘(𝑁𝐾))))
2212, 21eqtr4d 2211 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) = ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾))))
2322oveq2d 5881 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
244, 23eqtr4d 2211 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
251, 24eqtr4d 2211 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
2625adantl 277 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
27 bcval3 10697 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
28 simp1 997 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
29 nn0z 9244 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
30 zsubcl 9265 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
3129, 30sylan 283 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
32313adant3 1017 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
33 fznn0sub2 10096 . . . . . . . 8 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁 − (𝑁𝐾)) ∈ (0...𝑁))
3418eleq1d 2244 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁 − (𝑁𝐾)) ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁)))
3533, 34syl5ib 154 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁𝐾) ∈ (0...𝑁) → 𝐾 ∈ (0...𝑁)))
3635con3d 631 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (¬ 𝐾 ∈ (0...𝑁) → ¬ (𝑁𝐾) ∈ (0...𝑁)))
37363impia 1200 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ (𝑁𝐾) ∈ (0...𝑁))
38 bcval3 10697 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁𝐾) ∈ ℤ ∧ ¬ (𝑁𝐾) ∈ (0...𝑁)) → (𝑁C(𝑁𝐾)) = 0)
3928, 32, 37, 38syl3anc 1238 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C(𝑁𝐾)) = 0)
4027, 39eqtr4d 2211 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
41403expa 1203 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
42 simpr 110 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
43 0zd 9236 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 0 ∈ ℤ)
4429adantr 276 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
45 fzdcel 10008 . . . 4 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (0...𝑁))
4642, 43, 44, 45syl3anc 1238 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → DECID 𝐾 ∈ (0...𝑁))
47 exmiddc 836 . . 3 (DECID 𝐾 ∈ (0...𝑁) → (𝐾 ∈ (0...𝑁) ∨ ¬ 𝐾 ∈ (0...𝑁)))
4846, 47syl 14 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ∨ ¬ 𝐾 ∈ (0...𝑁)))
4926, 41, 48mpjaodan 798 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wcel 2146  cfv 5208  (class class class)co 5865  cc 7784  0cc0 7786   · cmul 7791  cmin 8102   / cdiv 8601  0cn0 9147  cz 9224  ...cfz 9977  !cfa 10671  Ccbc 10693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-fz 9978  df-seqfrec 10414  df-fac 10672  df-bc 10694
This theorem is referenced by:  bcnn  10703  bcnp1n  10705  bcp1m1  10711  bcnm1  10718
  Copyright terms: Public domain W3C validator