ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bccmpl GIF version

Theorem bccmpl 10943
Description: "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.)
Assertion
Ref Expression
bccmpl ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))

Proof of Theorem bccmpl
StepHypRef Expression
1 bcval2 10939 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
2 fznn0sub2 10292 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
3 bcval2 10939 . . . . . 6 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
42, 3syl 14 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
5 elfznn0 10278 . . . . . . . . . . 11 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
65faccld 10925 . . . . . . . . . 10 ((𝑁𝐾) ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
76nncnd 9092 . . . . . . . . 9 ((𝑁𝐾) ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
82, 7syl 14 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
9 elfznn0 10278 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
109faccld 10925 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℕ)
1110nncnd 9092 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℂ)
128, 11mulcomd 8136 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) = ((!‘𝐾) · (!‘(𝑁𝐾))))
13 elfz3nn0 10279 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
14 elfzelz 10189 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
15 nn0cn 9347 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
16 zcn 9419 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
17 nncan 8343 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 − (𝑁𝐾)) = 𝐾)
1815, 16, 17syl2an 289 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁 − (𝑁𝐾)) = 𝐾)
1913, 14, 18syl2anc 411 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (𝑁 − (𝑁𝐾)) = 𝐾)
2019fveq2d 5607 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘(𝑁 − (𝑁𝐾))) = (!‘𝐾))
2120oveq1d 5989 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾))) = ((!‘𝐾) · (!‘(𝑁𝐾))))
2212, 21eqtr4d 2245 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) = ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾))))
2322oveq2d 5990 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
244, 23eqtr4d 2245 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
251, 24eqtr4d 2245 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
2625adantl 277 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
27 bcval3 10940 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
28 simp1 1002 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
29 nn0z 9434 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
30 zsubcl 9455 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
3129, 30sylan 283 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
32313adant3 1022 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
33 fznn0sub2 10292 . . . . . . . 8 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁 − (𝑁𝐾)) ∈ (0...𝑁))
3418eleq1d 2278 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁 − (𝑁𝐾)) ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁)))
3533, 34imbitrid 154 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁𝐾) ∈ (0...𝑁) → 𝐾 ∈ (0...𝑁)))
3635con3d 634 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (¬ 𝐾 ∈ (0...𝑁) → ¬ (𝑁𝐾) ∈ (0...𝑁)))
37363impia 1205 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ (𝑁𝐾) ∈ (0...𝑁))
38 bcval3 10940 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁𝐾) ∈ ℤ ∧ ¬ (𝑁𝐾) ∈ (0...𝑁)) → (𝑁C(𝑁𝐾)) = 0)
3928, 32, 37, 38syl3anc 1252 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C(𝑁𝐾)) = 0)
4027, 39eqtr4d 2245 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
41403expa 1208 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
42 simpr 110 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
43 0zd 9426 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 0 ∈ ℤ)
4429adantr 276 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
45 fzdcel 10204 . . . 4 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (0...𝑁))
4642, 43, 44, 45syl3anc 1252 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → DECID 𝐾 ∈ (0...𝑁))
47 exmiddc 840 . . 3 (DECID 𝐾 ∈ (0...𝑁) → (𝐾 ∈ (0...𝑁) ∨ ¬ 𝐾 ∈ (0...𝑁)))
4846, 47syl 14 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ∨ ¬ 𝐾 ∈ (0...𝑁)))
4926, 41, 48mpjaodan 802 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 712  DECID wdc 838  w3a 983   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967   · cmul 7972  cmin 8285   / cdiv 8787  0cn0 9337  cz 9414  ...cfz 10172  !cfa 10914  Ccbc 10936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-fz 10173  df-seqfrec 10637  df-fac 10915  df-bc 10937
This theorem is referenced by:  bcnn  10946  bcnp1n  10948  bcp1m1  10954  bcnm1  10961
  Copyright terms: Public domain W3C validator