Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsbnd | GIF version |
Description: There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.) |
Ref | Expression |
---|---|
dvdsbnd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 9314 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) |
3 | 2 | abscld 11123 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ) |
4 | arch 9111 | . . 3 ⊢ ((abs‘𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛) |
6 | 3 | ad3antrrr 484 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) ∈ ℝ) |
7 | simpllr 524 | . . . . . . . . 9 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) | |
8 | 7 | nnred 8870 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ) |
9 | eluzelz 9475 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (ℤ≥‘𝑛) → 𝑚 ∈ ℤ) | |
10 | 9 | adantl 275 | . . . . . . . . 9 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ ℤ) |
11 | 10 | zred 9313 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ ℝ) |
12 | simplr 520 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) < 𝑛) | |
13 | eluzle 9478 | . . . . . . . . 9 ⊢ (𝑚 ∈ (ℤ≥‘𝑛) → 𝑛 ≤ 𝑚) | |
14 | 13 | adantl 275 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ≤ 𝑚) |
15 | 6, 8, 11, 12, 14 | ltletrd 8321 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) < 𝑚) |
16 | zabscl 11028 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ) | |
17 | 16 | ad4antr 486 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) ∈ ℤ) |
18 | zltnle 9237 | . . . . . . . 8 ⊢ (((abs‘𝐴) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴))) | |
19 | 17, 10, 18 | syl2anc 409 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴))) |
20 | 15, 19 | mpbid 146 | . . . . . 6 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ¬ 𝑚 ≤ (abs‘𝐴)) |
21 | 1 | ad3antrrr 484 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐴 ∈ ℤ) |
22 | simplr 520 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ≠ 0) | |
23 | 22 | ad2antrr 480 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐴 ≠ 0) |
24 | dvdsleabs 11783 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝑚 ∥ 𝐴 → 𝑚 ≤ (abs‘𝐴))) | |
25 | 24 | con3d 621 | . . . . . . 7 ⊢ ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚 ∥ 𝐴)) |
26 | 10, 21, 23, 25 | syl3anc 1228 | . . . . . 6 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚 ∥ 𝐴)) |
27 | 20, 26 | mpd 13 | . . . . 5 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ¬ 𝑚 ∥ 𝐴) |
28 | 27 | ralrimiva 2539 | . . . 4 ⊢ ((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) → ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
29 | 28 | ex 114 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → ((abs‘𝐴) < 𝑛 → ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴)) |
30 | 29 | reximdva 2568 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴)) |
31 | 5, 30 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 ∃wrex 2445 class class class wbr 3982 ‘cfv 5188 ℝcr 7752 0cc0 7753 < clt 7933 ≤ cle 7934 ℕcn 8857 ℤcz 9191 ℤ≥cuz 9466 abscabs 10939 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 |
This theorem is referenced by: gcdsupex 11890 gcdsupcl 11891 |
Copyright terms: Public domain | W3C validator |