![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsbnd | GIF version |
Description: There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.) |
Ref | Expression |
---|---|
dvdsbnd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 9375 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) |
3 | 2 | abscld 11189 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ) |
4 | arch 9172 | . . 3 ⊢ ((abs‘𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛) |
6 | 3 | ad3antrrr 492 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) ∈ ℝ) |
7 | simpllr 534 | . . . . . . . . 9 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) | |
8 | 7 | nnred 8931 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ) |
9 | eluzelz 9536 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (ℤ≥‘𝑛) → 𝑚 ∈ ℤ) | |
10 | 9 | adantl 277 | . . . . . . . . 9 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ ℤ) |
11 | 10 | zred 9374 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ ℝ) |
12 | simplr 528 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) < 𝑛) | |
13 | eluzle 9539 | . . . . . . . . 9 ⊢ (𝑚 ∈ (ℤ≥‘𝑛) → 𝑛 ≤ 𝑚) | |
14 | 13 | adantl 277 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ≤ 𝑚) |
15 | 6, 8, 11, 12, 14 | ltletrd 8379 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) < 𝑚) |
16 | zabscl 11094 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ) | |
17 | 16 | ad4antr 494 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) ∈ ℤ) |
18 | zltnle 9298 | . . . . . . . 8 ⊢ (((abs‘𝐴) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴))) | |
19 | 17, 10, 18 | syl2anc 411 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴))) |
20 | 15, 19 | mpbid 147 | . . . . . 6 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ¬ 𝑚 ≤ (abs‘𝐴)) |
21 | 1 | ad3antrrr 492 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐴 ∈ ℤ) |
22 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ≠ 0) | |
23 | 22 | ad2antrr 488 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐴 ≠ 0) |
24 | dvdsleabs 11850 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝑚 ∥ 𝐴 → 𝑚 ≤ (abs‘𝐴))) | |
25 | 24 | con3d 631 | . . . . . . 7 ⊢ ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚 ∥ 𝐴)) |
26 | 10, 21, 23, 25 | syl3anc 1238 | . . . . . 6 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚 ∥ 𝐴)) |
27 | 20, 26 | mpd 13 | . . . . 5 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ¬ 𝑚 ∥ 𝐴) |
28 | 27 | ralrimiva 2550 | . . . 4 ⊢ ((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) → ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
29 | 28 | ex 115 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → ((abs‘𝐴) < 𝑛 → ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴)) |
30 | 29 | reximdva 2579 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴)) |
31 | 5, 30 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 ≠ wne 2347 ∀wral 2455 ∃wrex 2456 class class class wbr 4003 ‘cfv 5216 ℝcr 7809 0cc0 7810 < clt 7991 ≤ cle 7992 ℕcn 8918 ℤcz 9252 ℤ≥cuz 9527 abscabs 11005 ∥ cdvds 11793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 ax-arch 7929 ax-caucvg 7930 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-frec 6391 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-reap 8531 df-ap 8538 df-div 8629 df-inn 8919 df-2 8977 df-3 8978 df-4 8979 df-n0 9176 df-z 9253 df-uz 9528 df-q 9619 df-rp 9653 df-seqfrec 10445 df-exp 10519 df-cj 10850 df-re 10851 df-im 10852 df-rsqrt 11006 df-abs 11007 df-dvds 11794 |
This theorem is referenced by: gcdsupex 11957 gcdsupcl 11958 |
Copyright terms: Public domain | W3C validator |