![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsbnd | GIF version |
Description: There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.) |
Ref | Expression |
---|---|
dvdsbnd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 9443 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) |
3 | 2 | abscld 11328 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ) |
4 | arch 9240 | . . 3 ⊢ ((abs‘𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛) |
6 | 3 | ad3antrrr 492 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) ∈ ℝ) |
7 | simpllr 534 | . . . . . . . . 9 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) | |
8 | 7 | nnred 8997 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ) |
9 | eluzelz 9604 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (ℤ≥‘𝑛) → 𝑚 ∈ ℤ) | |
10 | 9 | adantl 277 | . . . . . . . . 9 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ ℤ) |
11 | 10 | zred 9442 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ ℝ) |
12 | simplr 528 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) < 𝑛) | |
13 | eluzle 9607 | . . . . . . . . 9 ⊢ (𝑚 ∈ (ℤ≥‘𝑛) → 𝑛 ≤ 𝑚) | |
14 | 13 | adantl 277 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ≤ 𝑚) |
15 | 6, 8, 11, 12, 14 | ltletrd 8444 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) < 𝑚) |
16 | zabscl 11233 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ) | |
17 | 16 | ad4antr 494 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) ∈ ℤ) |
18 | zltnle 9366 | . . . . . . . 8 ⊢ (((abs‘𝐴) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴))) | |
19 | 17, 10, 18 | syl2anc 411 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴))) |
20 | 15, 19 | mpbid 147 | . . . . . 6 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ¬ 𝑚 ≤ (abs‘𝐴)) |
21 | 1 | ad3antrrr 492 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐴 ∈ ℤ) |
22 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ≠ 0) | |
23 | 22 | ad2antrr 488 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐴 ≠ 0) |
24 | dvdsleabs 11990 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝑚 ∥ 𝐴 → 𝑚 ≤ (abs‘𝐴))) | |
25 | 24 | con3d 632 | . . . . . . 7 ⊢ ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚 ∥ 𝐴)) |
26 | 10, 21, 23, 25 | syl3anc 1249 | . . . . . 6 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚 ∥ 𝐴)) |
27 | 20, 26 | mpd 13 | . . . . 5 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ¬ 𝑚 ∥ 𝐴) |
28 | 27 | ralrimiva 2567 | . . . 4 ⊢ ((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) → ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
29 | 28 | ex 115 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → ((abs‘𝐴) < 𝑛 → ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴)) |
30 | 29 | reximdva 2596 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴)) |
31 | 5, 30 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 ∃wrex 2473 class class class wbr 4030 ‘cfv 5255 ℝcr 7873 0cc0 7874 < clt 8056 ≤ cle 8057 ℕcn 8984 ℤcz 9320 ℤ≥cuz 9595 abscabs 11144 ∥ cdvds 11933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-dvds 11934 |
This theorem is referenced by: gcdsupex 12097 gcdsupcl 12098 |
Copyright terms: Public domain | W3C validator |