![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsbnd | GIF version |
Description: There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.) |
Ref | Expression |
---|---|
dvdsbnd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 9394 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) |
3 | 2 | abscld 11208 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ) |
4 | arch 9191 | . . 3 ⊢ ((abs‘𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛) | |
5 | 3, 4 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛) |
6 | 3 | ad3antrrr 492 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) ∈ ℝ) |
7 | simpllr 534 | . . . . . . . . 9 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) | |
8 | 7 | nnred 8950 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ) |
9 | eluzelz 9555 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (ℤ≥‘𝑛) → 𝑚 ∈ ℤ) | |
10 | 9 | adantl 277 | . . . . . . . . 9 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ ℤ) |
11 | 10 | zred 9393 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ ℝ) |
12 | simplr 528 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) < 𝑛) | |
13 | eluzle 9558 | . . . . . . . . 9 ⊢ (𝑚 ∈ (ℤ≥‘𝑛) → 𝑛 ≤ 𝑚) | |
14 | 13 | adantl 277 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑛 ≤ 𝑚) |
15 | 6, 8, 11, 12, 14 | ltletrd 8398 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) < 𝑚) |
16 | zabscl 11113 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ) | |
17 | 16 | ad4antr 494 | . . . . . . . 8 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (abs‘𝐴) ∈ ℤ) |
18 | zltnle 9317 | . . . . . . . 8 ⊢ (((abs‘𝐴) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴))) | |
19 | 17, 10, 18 | syl2anc 411 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴))) |
20 | 15, 19 | mpbid 147 | . . . . . 6 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ¬ 𝑚 ≤ (abs‘𝐴)) |
21 | 1 | ad3antrrr 492 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐴 ∈ ℤ) |
22 | simplr 528 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ≠ 0) | |
23 | 22 | ad2antrr 488 | . . . . . . 7 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐴 ≠ 0) |
24 | dvdsleabs 11869 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝑚 ∥ 𝐴 → 𝑚 ≤ (abs‘𝐴))) | |
25 | 24 | con3d 632 | . . . . . . 7 ⊢ ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚 ∥ 𝐴)) |
26 | 10, 21, 23, 25 | syl3anc 1249 | . . . . . 6 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚 ∥ 𝐴)) |
27 | 20, 26 | mpd 13 | . . . . 5 ⊢ (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ¬ 𝑚 ∥ 𝐴) |
28 | 27 | ralrimiva 2563 | . . . 4 ⊢ ((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) → ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
29 | 28 | ex 115 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → ((abs‘𝐴) < 𝑛 → ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴)) |
30 | 29 | reximdva 2592 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴)) |
31 | 5, 30 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2160 ≠ wne 2360 ∀wral 2468 ∃wrex 2469 class class class wbr 4018 ‘cfv 5231 ℝcr 7828 0cc0 7829 < clt 8010 ≤ cle 8011 ℕcn 8937 ℤcz 9271 ℤ≥cuz 9546 abscabs 11024 ∥ cdvds 11812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-precex 7939 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-apti 7944 ax-pre-ltadd 7945 ax-pre-mulgt0 7946 ax-pre-mulext 7947 ax-arch 7948 ax-caucvg 7949 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-frec 6410 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-reap 8550 df-ap 8557 df-div 8648 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-n0 9195 df-z 9272 df-uz 9547 df-q 9638 df-rp 9672 df-seqfrec 10464 df-exp 10538 df-cj 10869 df-re 10870 df-im 10871 df-rsqrt 11025 df-abs 11026 df-dvds 11813 |
This theorem is referenced by: gcdsupex 11976 gcdsupcl 11977 |
Copyright terms: Public domain | W3C validator |