ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsbnd GIF version

Theorem dvdsbnd 12148
Description: There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.)
Assertion
Ref Expression
dvdsbnd ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴)
Distinct variable group:   𝐴,𝑚,𝑛

Proof of Theorem dvdsbnd
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
21zcnd 9466 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
32abscld 11363 . . 3 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
4 arch 9263 . . 3 ((abs‘𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛)
53, 4syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛)
63ad3antrrr 492 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) ∈ ℝ)
7 simpllr 534 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
87nnred 9020 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ)
9 eluzelz 9627 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑛) → 𝑚 ∈ ℤ)
109adantl 277 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℤ)
1110zred 9465 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℝ)
12 simplr 528 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) < 𝑛)
13 eluzle 9630 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) → 𝑛𝑚)
1413adantl 277 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑛𝑚)
156, 8, 11, 12, 14ltletrd 8467 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) < 𝑚)
16 zabscl 11268 . . . . . . . . 9 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℤ)
1716ad4antr 494 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) ∈ ℤ)
18 zltnle 9389 . . . . . . . 8 (((abs‘𝐴) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴)))
1917, 10, 18syl2anc 411 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → ((abs‘𝐴) < 𝑚 ↔ ¬ 𝑚 ≤ (abs‘𝐴)))
2015, 19mpbid 147 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → ¬ 𝑚 ≤ (abs‘𝐴))
211ad3antrrr 492 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 ∈ ℤ)
22 simplr 528 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ≠ 0)
2322ad2antrr 488 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 ≠ 0)
24 dvdsleabs 12027 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝑚𝐴𝑚 ≤ (abs‘𝐴)))
2524con3d 632 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚𝐴))
2610, 21, 23, 25syl3anc 1249 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → (¬ 𝑚 ≤ (abs‘𝐴) → ¬ 𝑚𝐴))
2720, 26mpd 13 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) ∧ 𝑚 ∈ (ℤ𝑛)) → ¬ 𝑚𝐴)
2827ralrimiva 2570 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ (abs‘𝐴) < 𝑛) → ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴)
2928ex 115 . . 3 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ) → ((abs‘𝐴) < 𝑛 → ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴))
3029reximdva 2599 . 2 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (∃𝑛 ∈ ℕ (abs‘𝐴) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴))
315, 30mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980  wcel 2167  wne 2367  wral 2475  wrex 2476   class class class wbr 4034  cfv 5259  cr 7895  0cc0 7896   < clt 8078  cle 8079  cn 9007  cz 9343  cuz 9618  abscabs 11179  cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970
This theorem is referenced by:  gcdsupex  12149  gcdsupcl  12150
  Copyright terms: Public domain W3C validator