ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddm1even GIF version

Theorem oddm1even 12372
Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
oddm1even (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))

Proof of Theorem oddm1even
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℤ)
21zcnd 9558 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℂ)
3 1cnd 8150 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℂ)
4 2cnd 9171 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℂ)
5 simpr 110 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
65zcnd 9558 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
74, 6mulcld 8155 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℂ)
82, 3, 7subadd2d 8464 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 − 1) = (2 · 𝑛) ↔ ((2 · 𝑛) + 1) = 𝑁))
9 eqcom 2231 . . . . 5 ((𝑁 − 1) = (2 · 𝑛) ↔ (2 · 𝑛) = (𝑁 − 1))
104, 6mulcomd 8156 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) = (𝑛 · 2))
1110eqeq1d 2238 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = (𝑁 − 1) ↔ (𝑛 · 2) = (𝑁 − 1)))
129, 11bitrid 192 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 − 1) = (2 · 𝑛) ↔ (𝑛 · 2) = (𝑁 − 1)))
138, 12bitr3d 190 . . 3 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 · 2) = (𝑁 − 1)))
1413rexbidva 2527 . 2 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1)))
15 odd2np1 12370 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
16 2z 9462 . . 3 2 ∈ ℤ
17 peano2zm 9472 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
18 divides 12286 . . 3 ((2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1)))
1916, 17, 18sylancr 414 . 2 (𝑁 ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1)))
2014, 15, 193bitr4d 220 1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4082  (class class class)co 5994  1c1 7988   + caddc 7990   · cmul 7992  cmin 8305  2c2 9149  cz 9434  cdvds 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-dvds 12285
This theorem is referenced by:  oddp1even  12373  n2dvds3  12412  bitscmp  12455  oddennn  12949
  Copyright terms: Public domain W3C validator