ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddm1even GIF version

Theorem oddm1even 11778
Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
oddm1even (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))

Proof of Theorem oddm1even
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℤ)
21zcnd 9292 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℂ)
3 1cnd 7896 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℂ)
4 2cnd 8911 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℂ)
5 simpr 109 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
65zcnd 9292 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
74, 6mulcld 7900 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℂ)
82, 3, 7subadd2d 8209 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 − 1) = (2 · 𝑛) ↔ ((2 · 𝑛) + 1) = 𝑁))
9 eqcom 2159 . . . . 5 ((𝑁 − 1) = (2 · 𝑛) ↔ (2 · 𝑛) = (𝑁 − 1))
104, 6mulcomd 7901 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) = (𝑛 · 2))
1110eqeq1d 2166 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = (𝑁 − 1) ↔ (𝑛 · 2) = (𝑁 − 1)))
129, 11syl5bb 191 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 − 1) = (2 · 𝑛) ↔ (𝑛 · 2) = (𝑁 − 1)))
138, 12bitr3d 189 . . 3 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 · 2) = (𝑁 − 1)))
1413rexbidva 2454 . 2 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1)))
15 odd2np1 11776 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
16 2z 9200 . . 3 2 ∈ ℤ
17 peano2zm 9210 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
18 divides 11696 . . 3 ((2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1)))
1916, 17, 18sylancr 411 . 2 (𝑁 ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1)))
2014, 15, 193bitr4d 219 1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  wrex 2436   class class class wbr 3967  (class class class)co 5826  1c1 7735   + caddc 7737   · cmul 7739  cmin 8050  2c2 8889  cz 9172  cdvds 11694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-xor 1358  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-br 3968  df-opab 4028  df-id 4255  df-po 4258  df-iso 4259  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-iota 5137  df-fun 5174  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-2 8897  df-n0 9096  df-z 9173  df-dvds 11695
This theorem is referenced by:  oddp1even  11779  n2dvds3  11818  oddennn  12191
  Copyright terms: Public domain W3C validator