ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssqim GIF version

Theorem dvdssqim 10793
Description: Unidirectional form of dvdssq 10800. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
dvdssqim ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀↑2) ∥ (𝑁↑2)))

Proof of Theorem dvdssqim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 divides 10578 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
2 zsqcl 9862 . . . . . . 7 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℤ)
3 zsqcl 9862 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
4 dvdsmul2 10599 . . . . . . 7 (((𝑘↑2) ∈ ℤ ∧ (𝑀↑2) ∈ ℤ) → (𝑀↑2) ∥ ((𝑘↑2) · (𝑀↑2)))
52, 3, 4syl2anr 284 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀↑2) ∥ ((𝑘↑2) · (𝑀↑2)))
6 zcn 8651 . . . . . . 7 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
7 zcn 8651 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 sqmul 9854 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑘 · 𝑀)↑2) = ((𝑘↑2) · (𝑀↑2)))
96, 7, 8syl2anr 284 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀)↑2) = ((𝑘↑2) · (𝑀↑2)))
105, 9breqtrrd 3837 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀↑2) ∥ ((𝑘 · 𝑀)↑2))
11 oveq1 5598 . . . . . 6 ((𝑘 · 𝑀) = 𝑁 → ((𝑘 · 𝑀)↑2) = (𝑁↑2))
1211breq2d 3823 . . . . 5 ((𝑘 · 𝑀) = 𝑁 → ((𝑀↑2) ∥ ((𝑘 · 𝑀)↑2) ↔ (𝑀↑2) ∥ (𝑁↑2)))
1310, 12syl5ibcom 153 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
1413rexlimdva 2483 . . 3 (𝑀 ∈ ℤ → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
1514adantr 270 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
161, 15sylbid 148 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀↑2) ∥ (𝑁↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  wrex 2354   class class class wbr 3811  (class class class)co 5591  cc 7251   · cmul 7258  2c2 8366  cz 8646  cexp 9791  cdvds 10576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-2 8375  df-n0 8566  df-z 8647  df-uz 8915  df-iseq 9741  df-iexp 9792  df-dvds 10577
This theorem is referenced by:  sqgcd  10798  dvdssqlem  10799
  Copyright terms: Public domain W3C validator