![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemom | GIF version |
Description: Lemma for ennnfone 12428. 𝐻 yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹‘𝑦)⟩}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfonelemom.p | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
Ref | Expression |
---|---|
ennnfonelemom | ⊢ (𝜑 → dom (𝐻‘𝑃) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.h | . . . 4 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
2 | 1 | fveq1i 5518 | . . 3 ⊢ (𝐻‘𝑃) = (seq0(𝐺, 𝐽)‘𝑃) |
3 | 2 | dmeqi 4830 | . 2 ⊢ dom (𝐻‘𝑃) = dom (seq0(𝐺, 𝐽)‘𝑃) |
4 | ennnfonelemh.dceq | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
5 | ennnfonelemh.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
6 | ennnfonelemh.ne | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
7 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹‘𝑦)⟩}))) | |
8 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
9 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
10 | 4, 5, 6, 7, 8, 9, 1 | ennnfonelemj0 12404 | . . . . . 6 ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
11 | 4, 5, 6, 7, 8, 9, 1 | ennnfonelemg 12406 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
12 | nn0uz 9564 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
13 | 0zd 9267 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℤ) | |
14 | 4, 5, 6, 7, 8, 9, 1 | ennnfonelemjn 12405 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
15 | 10, 11, 12, 13, 14 | seqf2 10466 | . . . . 5 ⊢ (𝜑 → seq0(𝐺, 𝐽):ℕ0⟶{𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
16 | ennnfonelemom.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
17 | 15, 16 | ffvelcdmd 5654 | . . . 4 ⊢ (𝜑 → (seq0(𝐺, 𝐽)‘𝑃) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
18 | dmeq 4829 | . . . . . 6 ⊢ (𝑔 = (seq0(𝐺, 𝐽)‘𝑃) → dom 𝑔 = dom (seq0(𝐺, 𝐽)‘𝑃)) | |
19 | 18 | eleq1d 2246 | . . . . 5 ⊢ (𝑔 = (seq0(𝐺, 𝐽)‘𝑃) → (dom 𝑔 ∈ ω ↔ dom (seq0(𝐺, 𝐽)‘𝑃) ∈ ω)) |
20 | 19 | elrab 2895 | . . . 4 ⊢ ((seq0(𝐺, 𝐽)‘𝑃) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ↔ ((seq0(𝐺, 𝐽)‘𝑃) ∈ (𝐴 ↑pm ω) ∧ dom (seq0(𝐺, 𝐽)‘𝑃) ∈ ω)) |
21 | 17, 20 | sylib 122 | . . 3 ⊢ (𝜑 → ((seq0(𝐺, 𝐽)‘𝑃) ∈ (𝐴 ↑pm ω) ∧ dom (seq0(𝐺, 𝐽)‘𝑃) ∈ ω)) |
22 | 21 | simprd 114 | . 2 ⊢ (𝜑 → dom (seq0(𝐺, 𝐽)‘𝑃) ∈ ω) |
23 | 3, 22 | eqeltrid 2264 | 1 ⊢ (𝜑 → dom (𝐻‘𝑃) ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ∀wral 2455 ∃wrex 2456 {crab 2459 ∪ cun 3129 ∅c0 3424 ifcif 3536 {csn 3594 ⟨cop 3597 ↦ cmpt 4066 suc csuc 4367 ωcom 4591 ◡ccnv 4627 dom cdm 4628 “ cima 4631 –onto→wfo 5216 ‘cfv 5218 (class class class)co 5877 ∈ cmpo 5879 freccfrec 6393 ↑pm cpm 6651 0cc0 7813 1c1 7814 + caddc 7816 − cmin 8130 ℕ0cn0 9178 ℤcz 9255 seqcseq 10447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pm 6653 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-seqfrec 10448 |
This theorem is referenced by: ennnfonelemkh 12415 ennnfonelemhf1o 12416 ennnfonelemex 12417 ennnfonelemhom 12418 ennnfonelemdm 12423 |
Copyright terms: Public domain | W3C validator |