ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemom GIF version

Theorem ennnfonelemom 12401
Description: Lemma for ennnfone 12418. 𝐻 yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemom.p (𝜑𝑃 ∈ ℕ0)
Assertion
Ref Expression
ennnfonelemom (𝜑 → dom (𝐻𝑃) ∈ ω)
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑗,𝐽   𝑥,𝑁   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑦,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemom
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.h . . . 4 𝐻 = seq0(𝐺, 𝐽)
21fveq1i 5515 . . 3 (𝐻𝑃) = (seq0(𝐺, 𝐽)‘𝑃)
32dmeqi 4827 . 2 dom (𝐻𝑃) = dom (seq0(𝐺, 𝐽)‘𝑃)
4 ennnfonelemh.dceq . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
5 ennnfonelemh.f . . . . . . 7 (𝜑𝐹:ω–onto𝐴)
6 ennnfonelemh.ne . . . . . . 7 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
7 ennnfonelemh.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
8 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
9 ennnfonelemh.j . . . . . . 7 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
104, 5, 6, 7, 8, 9, 1ennnfonelemj0 12394 . . . . . 6 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
114, 5, 6, 7, 8, 9, 1ennnfonelemg 12396 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
12 nn0uz 9558 . . . . . 6 0 = (ℤ‘0)
13 0zd 9261 . . . . . 6 (𝜑 → 0 ∈ ℤ)
144, 5, 6, 7, 8, 9, 1ennnfonelemjn 12395 . . . . . 6 ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
1510, 11, 12, 13, 14seqf2 10459 . . . . 5 (𝜑 → seq0(𝐺, 𝐽):ℕ0⟶{𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
16 ennnfonelemom.p . . . . 5 (𝜑𝑃 ∈ ℕ0)
1715, 16ffvelcdmd 5651 . . . 4 (𝜑 → (seq0(𝐺, 𝐽)‘𝑃) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
18 dmeq 4826 . . . . . 6 (𝑔 = (seq0(𝐺, 𝐽)‘𝑃) → dom 𝑔 = dom (seq0(𝐺, 𝐽)‘𝑃))
1918eleq1d 2246 . . . . 5 (𝑔 = (seq0(𝐺, 𝐽)‘𝑃) → (dom 𝑔 ∈ ω ↔ dom (seq0(𝐺, 𝐽)‘𝑃) ∈ ω))
2019elrab 2893 . . . 4 ((seq0(𝐺, 𝐽)‘𝑃) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ↔ ((seq0(𝐺, 𝐽)‘𝑃) ∈ (𝐴pm ω) ∧ dom (seq0(𝐺, 𝐽)‘𝑃) ∈ ω))
2117, 20sylib 122 . . 3 (𝜑 → ((seq0(𝐺, 𝐽)‘𝑃) ∈ (𝐴pm ω) ∧ dom (seq0(𝐺, 𝐽)‘𝑃) ∈ ω))
2221simprd 114 . 2 (𝜑 → dom (seq0(𝐺, 𝐽)‘𝑃) ∈ ω)
233, 22eqeltrid 2264 1 (𝜑 → dom (𝐻𝑃) ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wral 2455  wrex 2456  {crab 2459  cun 3127  c0 3422  ifcif 3534  {csn 3592  cop 3595  cmpt 4063  suc csuc 4364  ωcom 4588  ccnv 4624  dom cdm 4625  cima 4628  ontowfo 5213  cfv 5215  (class class class)co 5872  cmpo 5874  freccfrec 6388  pm cpm 6646  0cc0 7808  1c1 7809   + caddc 7811  cmin 8124  0cn0 9172  cz 9249  seqcseq 10440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-recs 6303  df-frec 6389  df-pm 6648  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-inn 8916  df-n0 9173  df-z 9250  df-uz 9525  df-seqfrec 10441
This theorem is referenced by:  ennnfonelemkh  12405  ennnfonelemhf1o  12406  ennnfonelemex  12407  ennnfonelemhom  12408  ennnfonelemdm  12413
  Copyright terms: Public domain W3C validator