Proof of Theorem 4sqlemsdc
Step | Hyp | Ref
| Expression |
1 | | nn0negz 9322 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ -𝐴 ∈
ℤ) |
2 | | nn0z 9308 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
3 | 1 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ) |
4 | 2 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) |
5 | 3 | adantr 276 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ) |
6 | 4 | adantr 276 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) |
7 | 5 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ) |
8 | 6 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) |
9 | 8 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) |
10 | | elfzelz 10061 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ) |
11 | 10 | ad4antlr 495 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ) |
12 | | zsqcl2 10638 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℕ0) |
13 | 11, 12 | syl 14 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈
ℕ0) |
14 | | elfzelz 10061 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ) |
15 | 14 | ad3antlr 493 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ) |
16 | | zsqcl2 10638 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈
ℕ0) |
17 | 15, 16 | syl 14 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈
ℕ0) |
18 | 13, 17 | nn0addcld 9268 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈
ℕ0) |
19 | | elfzelz 10061 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (-𝐴...𝐴) → 𝑧 ∈ ℤ) |
20 | 19 | ad2antlr 489 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑧 ∈ ℤ) |
21 | | zsqcl2 10638 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℤ → (𝑧↑2) ∈
ℕ0) |
22 | 20, 21 | syl 14 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑧↑2) ∈
ℕ0) |
23 | | elfzelz 10061 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ (-𝐴...𝐴) → 𝑤 ∈ ℤ) |
24 | 23 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑤 ∈ ℤ) |
25 | | zsqcl2 10638 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℤ → (𝑤↑2) ∈
ℕ0) |
26 | 24, 25 | syl 14 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑤↑2) ∈
ℕ0) |
27 | 22, 26 | nn0addcld 9268 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → ((𝑧↑2) + (𝑤↑2)) ∈
ℕ0) |
28 | 18, 27 | nn0addcld 9268 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈
ℕ0) |
29 | 28 | nn0zd 9408 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℤ) |
30 | | zdceq 9363 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℤ) →
DECID 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
31 | 9, 29, 30 | syl2anc 411 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → DECID 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
32 | 7, 8, 31 | exfzdc 10276 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → DECID ∃𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
33 | 1 | ad5antr 496 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝐴 ∈ ℤ) |
34 | 2 | ad5antr 496 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 ∈ ℤ) |
35 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ) |
36 | 35 | zred 9410 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℝ) |
37 | 34 | zred 9410 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 ∈ ℝ) |
38 | 36 | renegcld 8372 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ∈ ℝ) |
39 | 36 | resqcld 10720 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ∈ ℝ) |
40 | 35 | znegcld 9412 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ∈ ℤ) |
41 | | zzlesq 10729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (-𝑤 ∈ ℤ → -𝑤 ≤ (-𝑤↑2)) |
42 | 40, 41 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ≤ (-𝑤↑2)) |
43 | 35 | zcnd 9411 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℂ) |
44 | | sqneg 10619 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ ℂ → (-𝑤↑2) = (𝑤↑2)) |
45 | 43, 44 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (-𝑤↑2) = (𝑤↑2)) |
46 | 42, 45 | breqtrd 4047 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ≤ (𝑤↑2)) |
47 | 19 | ad3antlr 493 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑧 ∈ ℤ) |
48 | 47, 21 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑧↑2) ∈
ℕ0) |
49 | 25 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ∈
ℕ0) |
50 | 48, 49 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈
ℕ0) |
51 | 50 | nn0red 9265 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℝ) |
52 | 10 | ad5antlr 497 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑥 ∈ ℤ) |
53 | 52, 12 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑥↑2) ∈
ℕ0) |
54 | 14 | ad4antlr 495 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑦 ∈ ℤ) |
55 | 54, 16 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑦↑2) ∈
ℕ0) |
56 | 53, 55 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈
ℕ0) |
57 | 56, 50 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈
ℕ0) |
58 | 57 | nn0red 9265 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ) |
59 | | nn0addge2 9258 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤↑2) ∈ ℝ ∧
(𝑧↑2) ∈
ℕ0) → (𝑤↑2) ≤ ((𝑧↑2) + (𝑤↑2))) |
60 | 39, 48, 59 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ ((𝑧↑2) + (𝑤↑2))) |
61 | | nn0addge2 9258 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑧↑2) + (𝑤↑2)) ∈ ℝ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0) →
((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
62 | 51, 56, 61 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
63 | 39, 51, 58, 60, 62 | letrd 8116 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
64 | | simplr 528 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
65 | 63, 64 | breqtrrd 4049 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ 𝐴) |
66 | 38, 39, 37, 46, 65 | letrd 8116 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ≤ 𝐴) |
67 | 36, 37, 66 | lenegcon1d 8519 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝐴 ≤ 𝑤) |
68 | | zzlesq 10729 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℤ → 𝑤 ≤ (𝑤↑2)) |
69 | 68 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ≤ (𝑤↑2)) |
70 | 36, 39, 37, 69, 65 | letrd 8116 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ≤ 𝐴) |
71 | 33, 34, 35, 67, 70 | elfzd 10052 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ (-𝐴...𝐴)) |
72 | 71 | ex 115 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑤 ∈ ℤ → 𝑤 ∈ (-𝐴...𝐴))) |
73 | 72, 23 | impbid1 142 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑤 ∈ ℤ ↔ 𝑤 ∈ (-𝐴...𝐴))) |
74 | 73 | ex 115 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑤 ∈ ℤ ↔ 𝑤 ∈ (-𝐴...𝐴)))) |
75 | 74 | pm5.32rd 451 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → ((𝑤 ∈ ℤ ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑤 ∈ (-𝐴...𝐴) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))) |
76 | 75 | rexbidv2 2493 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
77 | 76 | dcbid 839 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (DECID ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID
∃𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
78 | 32, 77 | mpbird 167 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → DECID ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
79 | 5, 6, 78 | exfzdc 10276 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID ∃𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
80 | 1 | ad5antr 496 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝐴 ∈ ℤ) |
81 | 2 | ad5antr 496 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℤ) |
82 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) |
83 | 82 | zred 9410 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℝ) |
84 | 81 | zred 9410 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℝ) |
85 | 83 | renegcld 8372 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ∈ ℝ) |
86 | 83 | resqcld 10720 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ∈ ℝ) |
87 | 82 | znegcld 9412 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ∈ ℤ) |
88 | | zzlesq 10729 |
. . . . . . . . . . . . . . . . . 18
⊢ (-𝑧 ∈ ℤ → -𝑧 ≤ (-𝑧↑2)) |
89 | 87, 88 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ≤ (-𝑧↑2)) |
90 | 82 | zcnd 9411 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℂ) |
91 | | sqneg 10619 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℂ → (-𝑧↑2) = (𝑧↑2)) |
92 | 90, 91 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (-𝑧↑2) = (𝑧↑2)) |
93 | 89, 92 | breqtrd 4047 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ≤ (𝑧↑2)) |
94 | 21 | adantl 277 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ∈
ℕ0) |
95 | 25 | ad3antlr 493 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑤↑2) ∈
ℕ0) |
96 | 94, 95 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈
ℕ0) |
97 | 96 | nn0red 9265 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℝ) |
98 | 10 | ad5antlr 497 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑥 ∈ ℤ) |
99 | 98, 12 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑥↑2) ∈
ℕ0) |
100 | 14 | ad4antlr 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑦 ∈ ℤ) |
101 | 100, 16 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑦↑2) ∈
ℕ0) |
102 | 99, 101 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈
ℕ0) |
103 | 102, 96 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈
ℕ0) |
104 | 103 | nn0red 9265 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ) |
105 | | nn0addge1 9257 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑧↑2) ∈ ℝ ∧
(𝑤↑2) ∈
ℕ0) → (𝑧↑2) ≤ ((𝑧↑2) + (𝑤↑2))) |
106 | 86, 95, 105 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ ((𝑧↑2) + (𝑤↑2))) |
107 | 97, 102, 61 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
108 | 86, 97, 104, 106, 107 | letrd 8116 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
109 | | simplr 528 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
110 | 108, 109 | breqtrrd 4049 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ 𝐴) |
111 | 85, 86, 84, 93, 110 | letrd 8116 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ≤ 𝐴) |
112 | 83, 84, 111 | lenegcon1d 8519 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝐴 ≤ 𝑧) |
113 | | zzlesq 10729 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℤ → 𝑧 ≤ (𝑧↑2)) |
114 | 113 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ≤ (𝑧↑2)) |
115 | 83, 86, 84, 114, 110 | letrd 8116 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ≤ 𝐴) |
116 | 80, 81, 82, 112, 115 | elfzd 10052 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ (-𝐴...𝐴)) |
117 | 116 | ex 115 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑧 ∈ ℤ → 𝑧 ∈ (-𝐴...𝐴))) |
118 | 117, 19 | impbid1 142 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑧 ∈ ℤ ↔ 𝑧 ∈ (-𝐴...𝐴))) |
119 | 118 | rexlimdva2 2610 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑧 ∈ ℤ ↔ 𝑧 ∈ (-𝐴...𝐴)))) |
120 | 119 | pm5.32rd 451 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑧 ∈ ℤ ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑧 ∈ (-𝐴...𝐴) ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))) |
121 | 120 | rexbidv2 2493 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
122 | 121 | dcbid 839 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (DECID ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID
∃𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
123 | 79, 122 | mpbird 167 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
124 | 3, 4, 123 | exfzdc 10276 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → DECID ∃𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
125 | 1 | ad5antr 496 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝐴 ∈ ℤ) |
126 | 2 | ad5antr 496 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 ∈ ℤ) |
127 | | simpr 110 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ) |
128 | 127 | zred 9410 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℝ) |
129 | 126 | zred 9410 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 ∈ ℝ) |
130 | 128 | renegcld 8372 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℝ) |
131 | 128 | resqcld 10720 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ∈ ℝ) |
132 | 127 | znegcld 9412 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ) |
133 | | zzlesq 10729 |
. . . . . . . . . . . . . . . . 17
⊢ (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2)) |
134 | 132, 133 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ≤ (-𝑦↑2)) |
135 | 127 | zcnd 9411 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ) |
136 | | sqneg 10619 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2)) |
137 | 135, 136 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (-𝑦↑2) = (𝑦↑2)) |
138 | 134, 137 | breqtrd 4047 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ≤ (𝑦↑2)) |
139 | 10 | ad5antlr 497 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ) |
140 | 139, 12 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑥↑2) ∈
ℕ0) |
141 | 16 | adantl 277 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ∈
ℕ0) |
142 | 140, 141 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈
ℕ0) |
143 | 142 | nn0red 9265 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℝ) |
144 | 21 | ad4antlr 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑧↑2) ∈
ℕ0) |
145 | 25 | ad3antlr 493 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑤↑2) ∈
ℕ0) |
146 | 144, 145 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈
ℕ0) |
147 | 142, 146 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈
ℕ0) |
148 | 147 | nn0red 9265 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ) |
149 | | nn0addge2 9258 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦↑2) ∈ ℝ ∧
(𝑥↑2) ∈
ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
150 | 131, 140,
149 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
151 | | nn0addge1 9257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥↑2) + (𝑦↑2)) ∈ ℝ ∧ ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) →
((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
152 | 143, 146,
151 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
153 | 131, 143,
148, 150, 152 | letrd 8116 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
154 | | simplr 528 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
155 | 153, 154 | breqtrrd 4049 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ 𝐴) |
156 | 130, 131,
129, 138, 155 | letrd 8116 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ≤ 𝐴) |
157 | 128, 129,
156 | lenegcon1d 8519 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝐴 ≤ 𝑦) |
158 | | zzlesq 10729 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2)) |
159 | 158 | adantl 277 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ≤ (𝑦↑2)) |
160 | 128, 131,
129, 159, 155 | letrd 8116 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ≤ 𝐴) |
161 | 125, 126,
127, 157, 160 | elfzd 10052 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ (-𝐴...𝐴)) |
162 | 161 | ex 115 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ → 𝑦 ∈ (-𝐴...𝐴))) |
163 | 162, 14 | impbid1 142 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴))) |
164 | 163 | r19.29an 2632 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴))) |
165 | 164 | rexlimdva2 2610 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴)))) |
166 | 165 | pm5.32rd 451 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))) |
167 | 166 | rexbidv2 2493 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
168 | 167 | dcbid 839 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (DECID ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID
∃𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
169 | 124, 168 | mpbird 167 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → DECID ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
170 | 1, 2, 169 | exfzdc 10276 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
171 | 1 | ad5antr 496 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ) |
172 | 2 | ad5antr 496 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ) |
173 | | simpr 110 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) |
174 | 173 | zred 9410 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ) |
175 | 172 | zred 9410 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) |
176 | 174 | renegcld 8372 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ) |
177 | 174 | resqcld 10720 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ) |
178 | 173 | znegcld 9412 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ) |
179 | | zzlesq 10729 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2)) |
180 | 178, 179 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2)) |
181 | 173 | zcnd 9411 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ) |
182 | | sqneg 10619 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2)) |
183 | 181, 182 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2)) |
184 | 180, 183 | breqtrd 4047 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2)) |
185 | 12 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈
ℕ0) |
186 | 16 | ad5antlr 497 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈
ℕ0) |
187 | 185, 186 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈
ℕ0) |
188 | 187 | nn0red 9265 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℝ) |
189 | 21 | ad4antlr 495 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑧↑2) ∈
ℕ0) |
190 | 25 | ad3antlr 493 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑤↑2) ∈
ℕ0) |
191 | 189, 190 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈
ℕ0) |
192 | 187, 191 | nn0addcld 9268 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈
ℕ0) |
193 | 192 | nn0red 9265 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ) |
194 | | nn0addge1 9257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥↑2) ∈ ℝ ∧
(𝑦↑2) ∈
ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
195 | 177, 186,
194 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
196 | 188, 191,
151 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
197 | 177, 188,
193, 195, 196 | letrd 8116 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
198 | | simplr 528 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
199 | 197, 198 | breqtrrd 4049 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴) |
200 | 176, 177,
175, 184, 199 | letrd 8116 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ 𝐴) |
201 | 174, 175,
200 | lenegcon1d 8519 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝐴 ≤ 𝑥) |
202 | | zzlesq 10729 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2)) |
203 | 202 | adantl 277 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2)) |
204 | 174, 177,
175, 203, 199 | letrd 8116 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ 𝐴) |
205 | 171, 172,
173, 201, 204 | elfzd 10052 |
. . . . . . . . . . 11
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴)) |
206 | 205 | ex 115 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴))) |
207 | 206, 10 | impbid1 142 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))) |
208 | 207 | r19.29an 2632 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝑧 ∈ ℤ)
∧ ∃𝑤 ∈
ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))) |
209 | 208 | r19.29an 2632 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ ∃𝑧 ∈
ℤ ∃𝑤 ∈
ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))) |
210 | 209 | rexlimdva2 2610 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0
→ (∃𝑦 ∈
ℤ ∃𝑧 ∈
ℤ ∃𝑤 ∈
ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))) |
211 | 210 | pm5.32rd 451 |
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ ((𝑥 ∈ ℤ
∧ ∃𝑦 ∈
ℤ ∃𝑧 ∈
ℤ ∃𝑤 ∈
ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))) |
212 | 211 | rexbidv2 2493 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ (∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ ∃𝑧 ∈
ℤ ∃𝑤 ∈
ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
213 | 212 | dcbid 839 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ (DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID
∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
214 | 170, 213 | mpbird 167 |
. 2
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
215 | | eqeq1 2196 |
. . . . . 6
⊢ (𝑛 = 𝐴 → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
216 | 215 | 2rexbidv 2515 |
. . . . 5
⊢ (𝑛 = 𝐴 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
217 | 216 | 2rexbidv 2515 |
. . . 4
⊢ (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
218 | | 4sqlem11.1 |
. . . 4
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
219 | 217, 218 | elab2g 2899 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
220 | 219 | dcbid 839 |
. 2
⊢ (𝐴 ∈ ℕ0
→ (DECID 𝐴 ∈ 𝑆 ↔ DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
221 | 214, 220 | mpbird 167 |
1
⊢ (𝐴 ∈ ℕ0
→ DECID 𝐴 ∈ 𝑆) |