ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemsdc GIF version

Theorem 4sqlemsdc 12443
Description: Lemma for 4sq 12453. The property of being the sum of four squares is decidable.

The proof involves showing that (for a particular 𝐴) there are only a finite number of possible ways that it could be the sum of four squares, so checking each of those possibilities in turn decides whether the number is the sum of four squares. If this proof is hard to follow, especially because of its length, the simplified versions at 4sqexercise1 12441 and 4sqexercise2 12442 may help clarify, as they are using very much the same techniques on simplified versions of this lemma. (Contributed by Jim Kingdon, 25-May-2025.)

Hypothesis
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlemsdc (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Distinct variable group:   𝐴,𝑛,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤,𝑛)

Proof of Theorem 4sqlemsdc
StepHypRef Expression
1 nn0negz 9322 . . . 4 (𝐴 ∈ ℕ0 → -𝐴 ∈ ℤ)
2 nn0z 9308 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
31adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
42adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
53adantr 276 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
64adantr 276 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
75adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
86adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
98adantr 276 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
10 elfzelz 10061 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ)
1110ad4antlr 495 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ)
12 zsqcl2 10638 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
1311, 12syl 14 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℕ0)
14 elfzelz 10061 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ)
1514ad3antlr 493 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ)
16 zsqcl2 10638 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
1715, 16syl 14 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈ ℕ0)
1813, 17nn0addcld 9268 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
19 elfzelz 10061 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (-𝐴...𝐴) → 𝑧 ∈ ℤ)
2019ad2antlr 489 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑧 ∈ ℤ)
21 zsqcl2 10638 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℕ0)
2220, 21syl 14 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑧↑2) ∈ ℕ0)
23 elfzelz 10061 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (-𝐴...𝐴) → 𝑤 ∈ ℤ)
2423adantl 277 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑤 ∈ ℤ)
25 zsqcl2 10638 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℤ → (𝑤↑2) ∈ ℕ0)
2624, 25syl 14 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑤↑2) ∈ ℕ0)
2722, 26nn0addcld 9268 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
2818, 27nn0addcld 9268 . . . . . . . . . . . 12 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
2928nn0zd 9408 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℤ)
30 zdceq 9363 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℤ) → DECID 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
319, 29, 30syl2anc 411 . . . . . . . . . 10 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → DECID 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
327, 8, 31exfzdc 10276 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → DECID𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
331ad5antr 496 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝐴 ∈ ℤ)
342ad5antr 496 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 ∈ ℤ)
35 simpr 110 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
3635zred 9410 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℝ)
3734zred 9410 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 ∈ ℝ)
3836renegcld 8372 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ∈ ℝ)
3936resqcld 10720 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ∈ ℝ)
4035znegcld 9412 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ∈ ℤ)
41 zzlesq 10729 . . . . . . . . . . . . . . . . . . . 20 (-𝑤 ∈ ℤ → -𝑤 ≤ (-𝑤↑2))
4240, 41syl 14 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ≤ (-𝑤↑2))
4335zcnd 9411 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℂ)
44 sqneg 10619 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ → (-𝑤↑2) = (𝑤↑2))
4543, 44syl 14 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (-𝑤↑2) = (𝑤↑2))
4642, 45breqtrd 4047 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ≤ (𝑤↑2))
4719ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑧 ∈ ℤ)
4847, 21syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑧↑2) ∈ ℕ0)
4925adantl 277 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ∈ ℕ0)
5048, 49nn0addcld 9268 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
5150nn0red 9265 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℝ)
5210ad5antlr 497 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑥 ∈ ℤ)
5352, 12syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑥↑2) ∈ ℕ0)
5414ad4antlr 495 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑦 ∈ ℤ)
5554, 16syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
5653, 55nn0addcld 9268 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
5756, 50nn0addcld 9268 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
5857nn0red 9265 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ)
59 nn0addge2 9258 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤↑2) ∈ ℝ ∧ (𝑧↑2) ∈ ℕ0) → (𝑤↑2) ≤ ((𝑧↑2) + (𝑤↑2)))
6039, 48, 59syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ ((𝑧↑2) + (𝑤↑2)))
61 nn0addge2 9258 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑧↑2) + (𝑤↑2)) ∈ ℝ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0) → ((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
6251, 56, 61syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
6339, 51, 58, 60, 62letrd 8116 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
64 simplr 528 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
6563, 64breqtrrd 4049 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ 𝐴)
6638, 39, 37, 46, 65letrd 8116 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤𝐴)
6736, 37, 66lenegcon1d 8519 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝐴𝑤)
68 zzlesq 10729 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℤ → 𝑤 ≤ (𝑤↑2))
6968adantl 277 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ≤ (𝑤↑2))
7036, 39, 37, 69, 65letrd 8116 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤𝐴)
7133, 34, 35, 67, 70elfzd 10052 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ (-𝐴...𝐴))
7271ex 115 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑤 ∈ ℤ → 𝑤 ∈ (-𝐴...𝐴)))
7372, 23impbid1 142 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑤 ∈ ℤ ↔ 𝑤 ∈ (-𝐴...𝐴)))
7473ex 115 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑤 ∈ ℤ ↔ 𝑤 ∈ (-𝐴...𝐴))))
7574pm5.32rd 451 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → ((𝑤 ∈ ℤ ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑤 ∈ (-𝐴...𝐴) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))))
7675rexbidv2 2493 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
7776dcbid 839 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (DECID𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
7832, 77mpbird 167 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → DECID𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
795, 6, 78exfzdc 10276 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
801ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝐴 ∈ ℤ)
812ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℤ)
82 simpr 110 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
8382zred 9410 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℝ)
8481zred 9410 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℝ)
8583renegcld 8372 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ∈ ℝ)
8683resqcld 10720 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ∈ ℝ)
8782znegcld 9412 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ∈ ℤ)
88 zzlesq 10729 . . . . . . . . . . . . . . . . . 18 (-𝑧 ∈ ℤ → -𝑧 ≤ (-𝑧↑2))
8987, 88syl 14 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ≤ (-𝑧↑2))
9082zcnd 9411 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℂ)
91 sqneg 10619 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℂ → (-𝑧↑2) = (𝑧↑2))
9290, 91syl 14 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (-𝑧↑2) = (𝑧↑2))
9389, 92breqtrd 4047 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ≤ (𝑧↑2))
9421adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ∈ ℕ0)
9525ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑤↑2) ∈ ℕ0)
9694, 95nn0addcld 9268 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
9796nn0red 9265 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℝ)
9810ad5antlr 497 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑥 ∈ ℤ)
9998, 12syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑥↑2) ∈ ℕ0)
10014ad4antlr 495 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑦 ∈ ℤ)
101100, 16syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
10299, 101nn0addcld 9268 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
103102, 96nn0addcld 9268 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
104103nn0red 9265 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ)
105 nn0addge1 9257 . . . . . . . . . . . . . . . . . . 19 (((𝑧↑2) ∈ ℝ ∧ (𝑤↑2) ∈ ℕ0) → (𝑧↑2) ≤ ((𝑧↑2) + (𝑤↑2)))
10686, 95, 105syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ ((𝑧↑2) + (𝑤↑2)))
10797, 102, 61syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
10886, 97, 104, 106, 107letrd 8116 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
109 simplr 528 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
110108, 109breqtrrd 4049 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ 𝐴)
11185, 86, 84, 93, 110letrd 8116 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧𝐴)
11283, 84, 111lenegcon1d 8519 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝐴𝑧)
113 zzlesq 10729 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℤ → 𝑧 ≤ (𝑧↑2))
114113adantl 277 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ≤ (𝑧↑2))
11583, 86, 84, 114, 110letrd 8116 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧𝐴)
11680, 81, 82, 112, 115elfzd 10052 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ (-𝐴...𝐴))
117116ex 115 . . . . . . . . . . . 12 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑧 ∈ ℤ → 𝑧 ∈ (-𝐴...𝐴)))
118117, 19impbid1 142 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑧 ∈ ℤ ↔ 𝑧 ∈ (-𝐴...𝐴)))
119118rexlimdva2 2610 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑧 ∈ ℤ ↔ 𝑧 ∈ (-𝐴...𝐴))))
120119pm5.32rd 451 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑧 ∈ ℤ ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑧 ∈ (-𝐴...𝐴) ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))))
121120rexbidv2 2493 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
122121dcbid 839 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (DECID𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
12379, 122mpbird 167 . . . . . 6 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
1243, 4, 123exfzdc 10276 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
1251ad5antr 496 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝐴 ∈ ℤ)
1262ad5antr 496 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 ∈ ℤ)
127 simpr 110 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
128127zred 9410 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℝ)
129126zred 9410 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 ∈ ℝ)
130128renegcld 8372 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℝ)
131128resqcld 10720 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ∈ ℝ)
132127znegcld 9412 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ)
133 zzlesq 10729 . . . . . . . . . . . . . . . . 17 (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
134132, 133syl 14 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ≤ (-𝑦↑2))
135127zcnd 9411 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
136 sqneg 10619 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2))
137135, 136syl 14 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (-𝑦↑2) = (𝑦↑2))
138134, 137breqtrd 4047 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ≤ (𝑦↑2))
13910ad5antlr 497 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ)
140139, 12syl 14 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑥↑2) ∈ ℕ0)
14116adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
142140, 141nn0addcld 9268 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
143142nn0red 9265 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℝ)
14421ad4antlr 495 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑧↑2) ∈ ℕ0)
14525ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑤↑2) ∈ ℕ0)
146144, 145nn0addcld 9268 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
147142, 146nn0addcld 9268 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
148147nn0red 9265 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ)
149 nn0addge2 9258 . . . . . . . . . . . . . . . . . 18 (((𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
150131, 140, 149syl2anc 411 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
151 nn0addge1 9257 . . . . . . . . . . . . . . . . . 18 ((((𝑥↑2) + (𝑦↑2)) ∈ ℝ ∧ ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
152143, 146, 151syl2anc 411 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
153131, 143, 148, 150, 152letrd 8116 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
154 simplr 528 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
155153, 154breqtrrd 4049 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ 𝐴)
156130, 131, 129, 138, 155letrd 8116 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦𝐴)
157128, 129, 156lenegcon1d 8519 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝐴𝑦)
158 zzlesq 10729 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2))
159158adantl 277 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ≤ (𝑦↑2))
160128, 131, 129, 159, 155letrd 8116 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦𝐴)
161125, 126, 127, 157, 160elfzd 10052 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ (-𝐴...𝐴))
162161ex 115 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ → 𝑦 ∈ (-𝐴...𝐴)))
163162, 14impbid1 142 . . . . . . . . . 10 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴)))
164163r19.29an 2632 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴)))
165164rexlimdva2 2610 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴))))
166165pm5.32rd 451 . . . . . . 7 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))))
167166rexbidv2 2493 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
168167dcbid 839 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (DECID𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
169124, 168mpbird 167 . . . 4 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
1701, 2, 169exfzdc 10276 . . 3 (𝐴 ∈ ℕ0DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
1711ad5antr 496 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ)
1722ad5antr 496 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
173 simpr 110 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
174173zred 9410 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
175172zred 9410 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
176174renegcld 8372 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ)
177174resqcld 10720 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ)
178173znegcld 9412 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
179 zzlesq 10729 . . . . . . . . . . . . . . . 16 (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
180178, 179syl 14 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2))
181173zcnd 9411 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
182 sqneg 10619 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2))
183181, 182syl 14 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2))
184180, 183breqtrd 4047 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2))
18512adantl 277 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℕ0)
18616ad5antlr 497 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
187185, 186nn0addcld 9268 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
188187nn0red 9265 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℝ)
18921ad4antlr 495 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑧↑2) ∈ ℕ0)
19025ad3antlr 493 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑤↑2) ∈ ℕ0)
191189, 190nn0addcld 9268 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
192187, 191nn0addcld 9268 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
193192nn0red 9265 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ)
194 nn0addge1 9257 . . . . . . . . . . . . . . . . 17 (((𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
195177, 186, 194syl2anc 411 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
196188, 191, 151syl2anc 411 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
197177, 188, 193, 195, 196letrd 8116 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
198 simplr 528 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
199197, 198breqtrrd 4049 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴)
200176, 177, 175, 184, 199letrd 8116 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥𝐴)
201174, 175, 200lenegcon1d 8519 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝐴𝑥)
202 zzlesq 10729 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2))
203202adantl 277 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2))
204174, 177, 175, 203, 199letrd 8116 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥𝐴)
205171, 172, 173, 201, 204elfzd 10052 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴))
206205ex 115 . . . . . . . . . 10 (((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴)))
207206, 10impbid1 142 . . . . . . . . 9 (((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
208207r19.29an 2632 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
209208r19.29an 2632 . . . . . . 7 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
210209rexlimdva2 2610 . . . . . 6 (𝐴 ∈ ℕ0 → (∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))))
211210pm5.32rd 451 . . . . 5 (𝐴 ∈ ℕ0 → ((𝑥 ∈ ℤ ∧ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))))
212211rexbidv2 2493 . . . 4 (𝐴 ∈ ℕ0 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
213212dcbid 839 . . 3 (𝐴 ∈ ℕ0 → (DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
214170, 213mpbird 167 . 2 (𝐴 ∈ ℕ0DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
215 eqeq1 2196 . . . . . 6 (𝑛 = 𝐴 → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
2162152rexbidv 2515 . . . . 5 (𝑛 = 𝐴 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
2172162rexbidv 2515 . . . 4 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
218 4sqlem11.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
219217, 218elab2g 2899 . . 3 (𝐴 ∈ ℕ0 → (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
220219dcbid 839 . 2 (𝐴 ∈ ℕ0 → (DECID 𝐴𝑆DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
221214, 220mpbird 167 1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2160  {cab 2175  wrex 2469   class class class wbr 4021  (class class class)co 5900  cc 7844  cr 7845   + caddc 7849  cle 8028  -cneg 8164  2c2 9005  0cn0 9211  cz 9288  ...cfz 10044  cexp 10559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-n0 9212  df-z 9289  df-uz 9564  df-fz 10045  df-fzo 10179  df-seqfrec 10485  df-exp 10560
This theorem is referenced by:  4sqlem13m  12446  4sqlem14  12447  4sqlem17  12450  4sqlem18  12451
  Copyright terms: Public domain W3C validator