Proof of Theorem 4sqlemsdc
| Step | Hyp | Ref
| Expression |
| 1 | | nn0negz 9360 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ -𝐴 ∈
ℤ) |
| 2 | | nn0z 9346 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
| 3 | 1 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ) |
| 4 | 2 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) |
| 5 | 3 | adantr 276 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ) |
| 6 | 4 | adantr 276 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) |
| 7 | 5 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ) |
| 8 | 6 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) |
| 9 | 8 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) |
| 10 | | elfzelz 10100 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ) |
| 11 | 10 | ad4antlr 495 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ) |
| 12 | | zsqcl2 10709 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℕ0) |
| 13 | 11, 12 | syl 14 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈
ℕ0) |
| 14 | | elfzelz 10100 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ) |
| 15 | 14 | ad3antlr 493 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ) |
| 16 | | zsqcl2 10709 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈
ℕ0) |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈
ℕ0) |
| 18 | 13, 17 | nn0addcld 9306 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈
ℕ0) |
| 19 | | elfzelz 10100 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (-𝐴...𝐴) → 𝑧 ∈ ℤ) |
| 20 | 19 | ad2antlr 489 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑧 ∈ ℤ) |
| 21 | | zsqcl2 10709 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℤ → (𝑧↑2) ∈
ℕ0) |
| 22 | 20, 21 | syl 14 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑧↑2) ∈
ℕ0) |
| 23 | | elfzelz 10100 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ (-𝐴...𝐴) → 𝑤 ∈ ℤ) |
| 24 | 23 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑤 ∈ ℤ) |
| 25 | | zsqcl2 10709 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℤ → (𝑤↑2) ∈
ℕ0) |
| 26 | 24, 25 | syl 14 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑤↑2) ∈
ℕ0) |
| 27 | 22, 26 | nn0addcld 9306 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → ((𝑧↑2) + (𝑤↑2)) ∈
ℕ0) |
| 28 | 18, 27 | nn0addcld 9306 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈
ℕ0) |
| 29 | 28 | nn0zd 9446 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℤ) |
| 30 | | zdceq 9401 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℤ) →
DECID 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 31 | 9, 29, 30 | syl2anc 411 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → DECID 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 32 | 7, 8, 31 | exfzdc 10316 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → DECID ∃𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 33 | 1 | ad5antr 496 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝐴 ∈ ℤ) |
| 34 | 2 | ad5antr 496 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 ∈ ℤ) |
| 35 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ) |
| 36 | 35 | zred 9448 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℝ) |
| 37 | 34 | zred 9448 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 38 | 36 | renegcld 8406 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ∈ ℝ) |
| 39 | 36 | resqcld 10791 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ∈ ℝ) |
| 40 | 35 | znegcld 9450 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ∈ ℤ) |
| 41 | | zzlesq 10800 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (-𝑤 ∈ ℤ → -𝑤 ≤ (-𝑤↑2)) |
| 42 | 40, 41 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ≤ (-𝑤↑2)) |
| 43 | 35 | zcnd 9449 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℂ) |
| 44 | | sqneg 10690 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ ℂ → (-𝑤↑2) = (𝑤↑2)) |
| 45 | 43, 44 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (-𝑤↑2) = (𝑤↑2)) |
| 46 | 42, 45 | breqtrd 4059 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ≤ (𝑤↑2)) |
| 47 | 19 | ad3antlr 493 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑧 ∈ ℤ) |
| 48 | 47, 21 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑧↑2) ∈
ℕ0) |
| 49 | 25 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ∈
ℕ0) |
| 50 | 48, 49 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈
ℕ0) |
| 51 | 50 | nn0red 9303 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℝ) |
| 52 | 10 | ad5antlr 497 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑥 ∈ ℤ) |
| 53 | 52, 12 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑥↑2) ∈
ℕ0) |
| 54 | 14 | ad4antlr 495 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑦 ∈ ℤ) |
| 55 | 54, 16 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑦↑2) ∈
ℕ0) |
| 56 | 53, 55 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈
ℕ0) |
| 57 | 56, 50 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈
ℕ0) |
| 58 | 57 | nn0red 9303 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ) |
| 59 | | nn0addge2 9296 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤↑2) ∈ ℝ ∧
(𝑧↑2) ∈
ℕ0) → (𝑤↑2) ≤ ((𝑧↑2) + (𝑤↑2))) |
| 60 | 39, 48, 59 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ ((𝑧↑2) + (𝑤↑2))) |
| 61 | | nn0addge2 9296 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑧↑2) + (𝑤↑2)) ∈ ℝ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0) →
((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 62 | 51, 56, 61 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 63 | 39, 51, 58, 60, 62 | letrd 8150 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 64 | | simplr 528 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 65 | 63, 64 | breqtrrd 4061 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ 𝐴) |
| 66 | 38, 39, 37, 46, 65 | letrd 8150 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ≤ 𝐴) |
| 67 | 36, 37, 66 | lenegcon1d 8554 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝐴 ≤ 𝑤) |
| 68 | | zzlesq 10800 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℤ → 𝑤 ≤ (𝑤↑2)) |
| 69 | 68 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ≤ (𝑤↑2)) |
| 70 | 36, 39, 37, 69, 65 | letrd 8150 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ≤ 𝐴) |
| 71 | 33, 34, 35, 67, 70 | elfzd 10091 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ (-𝐴...𝐴)) |
| 72 | 71 | ex 115 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑤 ∈ ℤ → 𝑤 ∈ (-𝐴...𝐴))) |
| 73 | 72, 23 | impbid1 142 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑤 ∈ ℤ ↔ 𝑤 ∈ (-𝐴...𝐴))) |
| 74 | 73 | ex 115 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑤 ∈ ℤ ↔ 𝑤 ∈ (-𝐴...𝐴)))) |
| 75 | 74 | pm5.32rd 451 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → ((𝑤 ∈ ℤ ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑤 ∈ (-𝐴...𝐴) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))) |
| 76 | 75 | rexbidv2 2500 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 77 | 76 | dcbid 839 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (DECID ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID
∃𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 78 | 32, 77 | mpbird 167 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → DECID ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 79 | 5, 6, 78 | exfzdc 10316 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID ∃𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 80 | 1 | ad5antr 496 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝐴 ∈ ℤ) |
| 81 | 2 | ad5antr 496 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℤ) |
| 82 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) |
| 83 | 82 | zred 9448 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℝ) |
| 84 | 81 | zred 9448 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 85 | 83 | renegcld 8406 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ∈ ℝ) |
| 86 | 83 | resqcld 10791 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ∈ ℝ) |
| 87 | 82 | znegcld 9450 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ∈ ℤ) |
| 88 | | zzlesq 10800 |
. . . . . . . . . . . . . . . . . 18
⊢ (-𝑧 ∈ ℤ → -𝑧 ≤ (-𝑧↑2)) |
| 89 | 87, 88 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ≤ (-𝑧↑2)) |
| 90 | 82 | zcnd 9449 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℂ) |
| 91 | | sqneg 10690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℂ → (-𝑧↑2) = (𝑧↑2)) |
| 92 | 90, 91 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (-𝑧↑2) = (𝑧↑2)) |
| 93 | 89, 92 | breqtrd 4059 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ≤ (𝑧↑2)) |
| 94 | 21 | adantl 277 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ∈
ℕ0) |
| 95 | 25 | ad3antlr 493 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑤↑2) ∈
ℕ0) |
| 96 | 94, 95 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈
ℕ0) |
| 97 | 96 | nn0red 9303 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℝ) |
| 98 | 10 | ad5antlr 497 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑥 ∈ ℤ) |
| 99 | 98, 12 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑥↑2) ∈
ℕ0) |
| 100 | 14 | ad4antlr 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑦 ∈ ℤ) |
| 101 | 100, 16 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑦↑2) ∈
ℕ0) |
| 102 | 99, 101 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈
ℕ0) |
| 103 | 102, 96 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈
ℕ0) |
| 104 | 103 | nn0red 9303 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ) |
| 105 | | nn0addge1 9295 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑧↑2) ∈ ℝ ∧
(𝑤↑2) ∈
ℕ0) → (𝑧↑2) ≤ ((𝑧↑2) + (𝑤↑2))) |
| 106 | 86, 95, 105 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ ((𝑧↑2) + (𝑤↑2))) |
| 107 | 97, 102, 61 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 108 | 86, 97, 104, 106, 107 | letrd 8150 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 109 | | simplr 528 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 110 | 108, 109 | breqtrrd 4061 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ 𝐴) |
| 111 | 85, 86, 84, 93, 110 | letrd 8150 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ≤ 𝐴) |
| 112 | 83, 84, 111 | lenegcon1d 8554 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝐴 ≤ 𝑧) |
| 113 | | zzlesq 10800 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℤ → 𝑧 ≤ (𝑧↑2)) |
| 114 | 113 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ≤ (𝑧↑2)) |
| 115 | 83, 86, 84, 114, 110 | letrd 8150 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ≤ 𝐴) |
| 116 | 80, 81, 82, 112, 115 | elfzd 10091 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ (-𝐴...𝐴)) |
| 117 | 116 | ex 115 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑧 ∈ ℤ → 𝑧 ∈ (-𝐴...𝐴))) |
| 118 | 117, 19 | impbid1 142 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑧 ∈ ℤ ↔ 𝑧 ∈ (-𝐴...𝐴))) |
| 119 | 118 | rexlimdva2 2617 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑧 ∈ ℤ ↔ 𝑧 ∈ (-𝐴...𝐴)))) |
| 120 | 119 | pm5.32rd 451 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑧 ∈ ℤ ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑧 ∈ (-𝐴...𝐴) ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))) |
| 121 | 120 | rexbidv2 2500 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 122 | 121 | dcbid 839 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (DECID ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID
∃𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 123 | 79, 122 | mpbird 167 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 124 | 3, 4, 123 | exfzdc 10316 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → DECID ∃𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 125 | 1 | ad5antr 496 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝐴 ∈ ℤ) |
| 126 | 2 | ad5antr 496 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 ∈ ℤ) |
| 127 | | simpr 110 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ) |
| 128 | 127 | zred 9448 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℝ) |
| 129 | 126 | zred 9448 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 130 | 128 | renegcld 8406 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℝ) |
| 131 | 128 | resqcld 10791 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ∈ ℝ) |
| 132 | 127 | znegcld 9450 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ) |
| 133 | | zzlesq 10800 |
. . . . . . . . . . . . . . . . 17
⊢ (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2)) |
| 134 | 132, 133 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ≤ (-𝑦↑2)) |
| 135 | 127 | zcnd 9449 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ) |
| 136 | | sqneg 10690 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2)) |
| 137 | 135, 136 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (-𝑦↑2) = (𝑦↑2)) |
| 138 | 134, 137 | breqtrd 4059 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ≤ (𝑦↑2)) |
| 139 | 10 | ad5antlr 497 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ) |
| 140 | 139, 12 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑥↑2) ∈
ℕ0) |
| 141 | 16 | adantl 277 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ∈
ℕ0) |
| 142 | 140, 141 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈
ℕ0) |
| 143 | 142 | nn0red 9303 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℝ) |
| 144 | 21 | ad4antlr 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑧↑2) ∈
ℕ0) |
| 145 | 25 | ad3antlr 493 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑤↑2) ∈
ℕ0) |
| 146 | 144, 145 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈
ℕ0) |
| 147 | 142, 146 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈
ℕ0) |
| 148 | 147 | nn0red 9303 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ) |
| 149 | | nn0addge2 9296 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦↑2) ∈ ℝ ∧
(𝑥↑2) ∈
ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
| 150 | 131, 140,
149 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
| 151 | | nn0addge1 9295 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥↑2) + (𝑦↑2)) ∈ ℝ ∧ ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) →
((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 152 | 143, 146,
151 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 153 | 131, 143,
148, 150, 152 | letrd 8150 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 154 | | simplr 528 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 155 | 153, 154 | breqtrrd 4061 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ 𝐴) |
| 156 | 130, 131,
129, 138, 155 | letrd 8150 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ≤ 𝐴) |
| 157 | 128, 129,
156 | lenegcon1d 8554 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝐴 ≤ 𝑦) |
| 158 | | zzlesq 10800 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2)) |
| 159 | 158 | adantl 277 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ≤ (𝑦↑2)) |
| 160 | 128, 131,
129, 159, 155 | letrd 8150 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ≤ 𝐴) |
| 161 | 125, 126,
127, 157, 160 | elfzd 10091 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ (-𝐴...𝐴)) |
| 162 | 161 | ex 115 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ → 𝑦 ∈ (-𝐴...𝐴))) |
| 163 | 162, 14 | impbid1 142 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑥
∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴))) |
| 164 | 163 | r19.29an 2639 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴))) |
| 165 | 164 | rexlimdva2 2617 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴)))) |
| 166 | 165 | pm5.32rd 451 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))) |
| 167 | 166 | rexbidv2 2500 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 168 | 167 | dcbid 839 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (DECID ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID
∃𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 169 | 124, 168 | mpbird 167 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → DECID ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 170 | 1, 2, 169 | exfzdc 10316 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 171 | 1 | ad5antr 496 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ) |
| 172 | 2 | ad5antr 496 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ) |
| 173 | | simpr 110 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) |
| 174 | 173 | zred 9448 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ) |
| 175 | 172 | zred 9448 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 176 | 174 | renegcld 8406 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ) |
| 177 | 174 | resqcld 10791 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ) |
| 178 | 173 | znegcld 9450 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ) |
| 179 | | zzlesq 10800 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2)) |
| 180 | 178, 179 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2)) |
| 181 | 173 | zcnd 9449 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ) |
| 182 | | sqneg 10690 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2)) |
| 183 | 181, 182 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2)) |
| 184 | 180, 183 | breqtrd 4059 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2)) |
| 185 | 12 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈
ℕ0) |
| 186 | 16 | ad5antlr 497 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈
ℕ0) |
| 187 | 185, 186 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈
ℕ0) |
| 188 | 187 | nn0red 9303 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℝ) |
| 189 | 21 | ad4antlr 495 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑧↑2) ∈
ℕ0) |
| 190 | 25 | ad3antlr 493 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑤↑2) ∈
ℕ0) |
| 191 | 189, 190 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈
ℕ0) |
| 192 | 187, 191 | nn0addcld 9306 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈
ℕ0) |
| 193 | 192 | nn0red 9303 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ) |
| 194 | | nn0addge1 9295 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥↑2) ∈ ℝ ∧
(𝑦↑2) ∈
ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
| 195 | 177, 186,
194 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
| 196 | 188, 191,
151 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 197 | 177, 188,
193, 195, 196 | letrd 8150 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 198 | | simplr 528 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 199 | 197, 198 | breqtrrd 4061 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴) |
| 200 | 176, 177,
175, 184, 199 | letrd 8150 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ 𝐴) |
| 201 | 174, 175,
200 | lenegcon1d 8554 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝐴 ≤ 𝑥) |
| 202 | | zzlesq 10800 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2)) |
| 203 | 202 | adantl 277 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2)) |
| 204 | 174, 177,
175, 203, 199 | letrd 8150 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ 𝐴) |
| 205 | 171, 172,
173, 201, 204 | elfzd 10091 |
. . . . . . . . . . 11
⊢
((((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴)) |
| 206 | 205 | ex 115 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴))) |
| 207 | 206, 10 | impbid1 142 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℕ0 ∧ 𝑦
∈ ℤ) ∧ 𝑧
∈ ℤ) ∧ 𝑤
∈ ℤ) ∧ 𝐴 =
(((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))) |
| 208 | 207 | r19.29an 2639 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝑧 ∈ ℤ)
∧ ∃𝑤 ∈
ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))) |
| 209 | 208 | r19.29an 2639 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ ∃𝑧 ∈
ℤ ∃𝑤 ∈
ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))) |
| 210 | 209 | rexlimdva2 2617 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0
→ (∃𝑦 ∈
ℤ ∃𝑧 ∈
ℤ ∃𝑤 ∈
ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))) |
| 211 | 210 | pm5.32rd 451 |
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ ((𝑥 ∈ ℤ
∧ ∃𝑦 ∈
ℤ ∃𝑧 ∈
ℤ ∃𝑤 ∈
ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))) |
| 212 | 211 | rexbidv2 2500 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ (∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ ∃𝑧 ∈
ℤ ∃𝑤 ∈
ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 213 | 212 | dcbid 839 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ (DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID
∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 214 | 170, 213 | mpbird 167 |
. 2
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) |
| 215 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑛 = 𝐴 → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 216 | 215 | 2rexbidv 2522 |
. . . . 5
⊢ (𝑛 = 𝐴 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 217 | 216 | 2rexbidv 2522 |
. . . 4
⊢ (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 218 | | 4sqlem11.1 |
. . . 4
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
| 219 | 217, 218 | elab2g 2911 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 220 | 219 | dcbid 839 |
. 2
⊢ (𝐴 ∈ ℕ0
→ (DECID 𝐴 ∈ 𝑆 ↔ DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))) |
| 221 | 214, 220 | mpbird 167 |
1
⊢ (𝐴 ∈ ℕ0
→ DECID 𝐴 ∈ 𝑆) |