ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemsdc GIF version

Theorem 4sqlemsdc 12918
Description: Lemma for 4sq 12928. The property of being the sum of four squares is decidable.

The proof involves showing that (for a particular 𝐴) there are only a finite number of possible ways that it could be the sum of four squares, so checking each of those possibilities in turn decides whether the number is the sum of four squares. If this proof is hard to follow, especially because of its length, the simplified versions at 4sqexercise1 12916 and 4sqexercise2 12917 may help clarify, as they are using very much the same techniques on simplified versions of this lemma. (Contributed by Jim Kingdon, 25-May-2025.)

Hypothesis
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlemsdc (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Distinct variable group:   𝐴,𝑛,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤,𝑛)

Proof of Theorem 4sqlemsdc
StepHypRef Expression
1 nn0negz 9476 . . . 4 (𝐴 ∈ ℕ0 → -𝐴 ∈ ℤ)
2 nn0z 9462 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
31adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
42adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
53adantr 276 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
64adantr 276 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
75adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
86adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
98adantr 276 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
10 elfzelz 10217 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ)
1110ad4antlr 495 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ)
12 zsqcl2 10834 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
1311, 12syl 14 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℕ0)
14 elfzelz 10217 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ)
1514ad3antlr 493 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ)
16 zsqcl2 10834 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
1715, 16syl 14 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈ ℕ0)
1813, 17nn0addcld 9422 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
19 elfzelz 10217 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (-𝐴...𝐴) → 𝑧 ∈ ℤ)
2019ad2antlr 489 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑧 ∈ ℤ)
21 zsqcl2 10834 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℕ0)
2220, 21syl 14 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑧↑2) ∈ ℕ0)
23 elfzelz 10217 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (-𝐴...𝐴) → 𝑤 ∈ ℤ)
2423adantl 277 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → 𝑤 ∈ ℤ)
25 zsqcl2 10834 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℤ → (𝑤↑2) ∈ ℕ0)
2624, 25syl 14 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (𝑤↑2) ∈ ℕ0)
2722, 26nn0addcld 9422 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
2818, 27nn0addcld 9422 . . . . . . . . . . . 12 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
2928nn0zd 9563 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℤ)
30 zdceq 9518 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℤ) → DECID 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
319, 29, 30syl2anc 411 . . . . . . . . . 10 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ (-𝐴...𝐴)) → DECID 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
327, 8, 31exfzdc 10441 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → DECID𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
331ad5antr 496 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝐴 ∈ ℤ)
342ad5antr 496 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 ∈ ℤ)
35 simpr 110 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
3635zred 9565 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℝ)
3734zred 9565 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 ∈ ℝ)
3836renegcld 8522 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ∈ ℝ)
3936resqcld 10916 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ∈ ℝ)
4035znegcld 9567 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ∈ ℤ)
41 zzlesq 10925 . . . . . . . . . . . . . . . . . . . 20 (-𝑤 ∈ ℤ → -𝑤 ≤ (-𝑤↑2))
4240, 41syl 14 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ≤ (-𝑤↑2))
4335zcnd 9566 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℂ)
44 sqneg 10815 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ → (-𝑤↑2) = (𝑤↑2))
4543, 44syl 14 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (-𝑤↑2) = (𝑤↑2))
4642, 45breqtrd 4108 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤 ≤ (𝑤↑2))
4719ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑧 ∈ ℤ)
4847, 21syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑧↑2) ∈ ℕ0)
4925adantl 277 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ∈ ℕ0)
5048, 49nn0addcld 9422 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
5150nn0red 9419 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℝ)
5210ad5antlr 497 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑥 ∈ ℤ)
5352, 12syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑥↑2) ∈ ℕ0)
5414ad4antlr 495 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑦 ∈ ℤ)
5554, 16syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
5653, 55nn0addcld 9422 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
5756, 50nn0addcld 9422 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
5857nn0red 9419 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ)
59 nn0addge2 9412 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤↑2) ∈ ℝ ∧ (𝑧↑2) ∈ ℕ0) → (𝑤↑2) ≤ ((𝑧↑2) + (𝑤↑2)))
6039, 48, 59syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ ((𝑧↑2) + (𝑤↑2)))
61 nn0addge2 9412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑧↑2) + (𝑤↑2)) ∈ ℝ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0) → ((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
6251, 56, 61syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
6339, 51, 58, 60, 62letrd 8266 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
64 simplr 528 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
6563, 64breqtrrd 4110 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → (𝑤↑2) ≤ 𝐴)
6638, 39, 37, 46, 65letrd 8266 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝑤𝐴)
6736, 37, 66lenegcon1d 8670 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → -𝐴𝑤)
68 zzlesq 10925 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℤ → 𝑤 ≤ (𝑤↑2))
6968adantl 277 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ≤ (𝑤↑2))
7036, 39, 37, 69, 65letrd 8266 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤𝐴)
7133, 34, 35, 67, 70elfzd 10208 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ (-𝐴...𝐴))
7271ex 115 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑤 ∈ ℤ → 𝑤 ∈ (-𝐴...𝐴)))
7372, 23impbid1 142 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑤 ∈ ℤ ↔ 𝑤 ∈ (-𝐴...𝐴)))
7473ex 115 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑤 ∈ ℤ ↔ 𝑤 ∈ (-𝐴...𝐴))))
7574pm5.32rd 451 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → ((𝑤 ∈ ℤ ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑤 ∈ (-𝐴...𝐴) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))))
7675rexbidv2 2533 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
7776dcbid 843 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → (DECID𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID𝑤 ∈ (-𝐴...𝐴)𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
7832, 77mpbird 167 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ (-𝐴...𝐴)) → DECID𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
795, 6, 78exfzdc 10441 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
801ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝐴 ∈ ℤ)
812ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℤ)
82 simpr 110 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
8382zred 9565 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℝ)
8481zred 9565 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℝ)
8583renegcld 8522 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ∈ ℝ)
8683resqcld 10916 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ∈ ℝ)
8782znegcld 9567 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ∈ ℤ)
88 zzlesq 10925 . . . . . . . . . . . . . . . . . 18 (-𝑧 ∈ ℤ → -𝑧 ≤ (-𝑧↑2))
8987, 88syl 14 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ≤ (-𝑧↑2))
9082zcnd 9566 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℂ)
91 sqneg 10815 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℂ → (-𝑧↑2) = (𝑧↑2))
9290, 91syl 14 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (-𝑧↑2) = (𝑧↑2))
9389, 92breqtrd 4108 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧 ≤ (𝑧↑2))
9421adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ∈ ℕ0)
9525ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑤↑2) ∈ ℕ0)
9694, 95nn0addcld 9422 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
9796nn0red 9419 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℝ)
9810ad5antlr 497 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑥 ∈ ℤ)
9998, 12syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑥↑2) ∈ ℕ0)
10014ad4antlr 495 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑦 ∈ ℤ)
101100, 16syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
10299, 101nn0addcld 9422 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
103102, 96nn0addcld 9422 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
104103nn0red 9419 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ)
105 nn0addge1 9411 . . . . . . . . . . . . . . . . . . 19 (((𝑧↑2) ∈ ℝ ∧ (𝑤↑2) ∈ ℕ0) → (𝑧↑2) ≤ ((𝑧↑2) + (𝑤↑2)))
10686, 95, 105syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ ((𝑧↑2) + (𝑤↑2)))
10797, 102, 61syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
10886, 97, 104, 106, 107letrd 8266 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
109 simplr 528 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
110108, 109breqtrrd 4110 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → (𝑧↑2) ≤ 𝐴)
11185, 86, 84, 93, 110letrd 8266 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝑧𝐴)
11283, 84, 111lenegcon1d 8670 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → -𝐴𝑧)
113 zzlesq 10925 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℤ → 𝑧 ≤ (𝑧↑2))
114113adantl 277 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ≤ (𝑧↑2))
11583, 86, 84, 114, 110letrd 8266 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧𝐴)
11680, 81, 82, 112, 115elfzd 10208 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ (-𝐴...𝐴))
117116ex 115 . . . . . . . . . . . 12 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑧 ∈ ℤ → 𝑧 ∈ (-𝐴...𝐴)))
118117, 19impbid1 142 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑧 ∈ ℤ ↔ 𝑧 ∈ (-𝐴...𝐴)))
119118rexlimdva2 2651 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑧 ∈ ℤ ↔ 𝑧 ∈ (-𝐴...𝐴))))
120119pm5.32rd 451 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑧 ∈ ℤ ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑧 ∈ (-𝐴...𝐴) ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))))
121120rexbidv2 2533 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
122121dcbid 843 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (DECID𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID𝑧 ∈ (-𝐴...𝐴)∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
12379, 122mpbird 167 . . . . . 6 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
1243, 4, 123exfzdc 10441 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
1251ad5antr 496 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝐴 ∈ ℤ)
1262ad5antr 496 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 ∈ ℤ)
127 simpr 110 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
128127zred 9565 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℝ)
129126zred 9565 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 ∈ ℝ)
130128renegcld 8522 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℝ)
131128resqcld 10916 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ∈ ℝ)
132127znegcld 9567 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ)
133 zzlesq 10925 . . . . . . . . . . . . . . . . 17 (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
134132, 133syl 14 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ≤ (-𝑦↑2))
135127zcnd 9566 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
136 sqneg 10815 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2))
137135, 136syl 14 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (-𝑦↑2) = (𝑦↑2))
138134, 137breqtrd 4108 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦 ≤ (𝑦↑2))
13910ad5antlr 497 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ)
140139, 12syl 14 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑥↑2) ∈ ℕ0)
14116adantl 277 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
142140, 141nn0addcld 9422 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
143142nn0red 9419 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℝ)
14421ad4antlr 495 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑧↑2) ∈ ℕ0)
14525ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑤↑2) ∈ ℕ0)
146144, 145nn0addcld 9422 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
147142, 146nn0addcld 9422 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
148147nn0red 9419 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ)
149 nn0addge2 9412 . . . . . . . . . . . . . . . . . 18 (((𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
150131, 140, 149syl2anc 411 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
151 nn0addge1 9411 . . . . . . . . . . . . . . . . . 18 ((((𝑥↑2) + (𝑦↑2)) ∈ ℝ ∧ ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
152143, 146, 151syl2anc 411 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
153131, 143, 148, 150, 152letrd 8266 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
154 simplr 528 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
155153, 154breqtrrd 4110 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → (𝑦↑2) ≤ 𝐴)
156130, 131, 129, 138, 155letrd 8266 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝑦𝐴)
157128, 129, 156lenegcon1d 8670 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → -𝐴𝑦)
158 zzlesq 10925 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2))
159158adantl 277 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ≤ (𝑦↑2))
160128, 131, 129, 159, 155letrd 8266 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦𝐴)
161125, 126, 127, 157, 160elfzd 10208 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ (-𝐴...𝐴))
162161ex 115 . . . . . . . . . . 11 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ → 𝑦 ∈ (-𝐴...𝐴)))
163162, 14impbid1 142 . . . . . . . . . 10 (((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴)))
164163r19.29an 2673 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑧 ∈ ℤ) ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴)))
165164rexlimdva2 2651 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑦 ∈ ℤ ↔ 𝑦 ∈ (-𝐴...𝐴))))
166165pm5.32rd 451 . . . . . . 7 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))))
167166rexbidv2 2533 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
168167dcbid 843 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (DECID𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID𝑦 ∈ (-𝐴...𝐴)∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
169124, 168mpbird 167 . . . 4 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
1701, 2, 169exfzdc 10441 . . 3 (𝐴 ∈ ℕ0DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
1711ad5antr 496 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ)
1722ad5antr 496 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
173 simpr 110 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
174173zred 9565 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
175172zred 9565 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
176174renegcld 8522 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ)
177174resqcld 10916 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ)
178173znegcld 9567 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
179 zzlesq 10925 . . . . . . . . . . . . . . . 16 (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
180178, 179syl 14 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2))
181173zcnd 9566 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
182 sqneg 10815 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2))
183181, 182syl 14 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2))
184180, 183breqtrd 4108 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2))
18512adantl 277 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℕ0)
18616ad5antlr 497 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
187185, 186nn0addcld 9422 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
188187nn0red 9419 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℝ)
18921ad4antlr 495 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑧↑2) ∈ ℕ0)
19025ad3antlr 493 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑤↑2) ∈ ℕ0)
191189, 190nn0addcld 9422 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
192187, 191nn0addcld 9422 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
193192nn0red 9419 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℝ)
194 nn0addge1 9411 . . . . . . . . . . . . . . . . 17 (((𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
195177, 186, 194syl2anc 411 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
196188, 191, 151syl2anc 411 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
197177, 188, 193, 195, 196letrd 8266 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
198 simplr 528 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
199197, 198breqtrrd 4110 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴)
200176, 177, 175, 184, 199letrd 8266 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝑥𝐴)
201174, 175, 200lenegcon1d 8670 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → -𝐴𝑥)
202 zzlesq 10925 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2))
203202adantl 277 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2))
204174, 177, 175, 203, 199letrd 8266 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥𝐴)
205171, 172, 173, 201, 204elfzd 10208 . . . . . . . . . . 11 ((((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴))
206205ex 115 . . . . . . . . . 10 (((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴)))
207206, 10impbid1 142 . . . . . . . . 9 (((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ 𝑤 ∈ ℤ) ∧ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
208207r19.29an 2673 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝑧 ∈ ℤ) ∧ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
209208r19.29an 2673 . . . . . . 7 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
210209rexlimdva2 2651 . . . . . 6 (𝐴 ∈ ℕ0 → (∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))))
211210pm5.32rd 451 . . . . 5 (𝐴 ∈ ℕ0 → ((𝑥 ∈ ℤ ∧ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))))
212211rexbidv2 2533 . . . 4 (𝐴 ∈ ℕ0 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
213212dcbid 843 . . 3 (𝐴 ∈ ℕ0 → (DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
214170, 213mpbird 167 . 2 (𝐴 ∈ ℕ0DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
215 eqeq1 2236 . . . . . 6 (𝑛 = 𝐴 → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
2162152rexbidv 2555 . . . . 5 (𝑛 = 𝐴 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
2172162rexbidv 2555 . . . 4 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
218 4sqlem11.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
219217, 218elab2g 2950 . . 3 (𝐴 ∈ ℕ0 → (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
220219dcbid 843 . 2 (𝐴 ∈ ℕ0 → (DECID 𝐴𝑆DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝐴 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
221214, 220mpbird 167 1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wcel 2200  {cab 2215  wrex 2509   class class class wbr 4082  (class class class)co 6000  cc 7993  cr 7994   + caddc 7998  cle 8178  -cneg 8314  2c2 9157  0cn0 9365  cz 9442  ...cfz 10200  cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  4sqlem13m  12921  4sqlem14  12922  4sqlem17  12925  4sqlem18  12926
  Copyright terms: Public domain W3C validator