ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise1 GIF version

Theorem 4sqexercise1 12765
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12767. (Contributed by Jim Kingdon, 25-May-2025.)
Hypothesis
Ref Expression
4sqexercise1.s 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2)}
Assertion
Ref Expression
4sqexercise1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Distinct variable group:   𝐴,𝑛,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑛)

Proof of Theorem 4sqexercise1
StepHypRef Expression
1 nn0negz 9413 . . . 4 (𝐴 ∈ ℕ0 → -𝐴 ∈ ℤ)
2 nn0z 9399 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
3 elfzelz 10154 . . . . . . 7 (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ)
43adantl 277 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ)
5 zsqcl 10762 . . . . . 6 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
64, 5syl 14 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ)
7 zdceq 9455 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ) → DECID 𝐴 = (𝑥↑2))
82, 6, 7syl2an2r 595 . . . 4 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID 𝐴 = (𝑥↑2))
91, 2, 8exfzdc 10376 . . 3 (𝐴 ∈ ℕ0DECID𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2))
10 simpr 110 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 = (𝑥↑2))
11 zsqcl2 10769 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
1211adantr 276 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (𝑥↑2) ∈ ℕ0)
1310, 12eqeltrd 2283 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℕ0)
1413nn0zd 9500 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℤ)
1514znegcld 9504 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝐴 ∈ ℤ)
16 simpl 109 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ ℤ)
17 zre 9383 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
1817adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ ℝ)
1913nn0red 9356 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℝ)
20 znegcl 9410 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
21 zzlesq 10860 . . . . . . . . . . . . 13 (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
2220, 21syl 14 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
2322adantr 276 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ (-𝑥↑2))
24 zcn 9384 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
25 sqneg 10750 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2))
2624, 25syl 14 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (-𝑥↑2) = (𝑥↑2))
2726adantr 276 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (-𝑥↑2) = (𝑥↑2))
2823, 27breqtrd 4073 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ (𝑥↑2))
2928, 10breqtrrd 4075 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥𝐴)
3018, 19, 29lenegcon1d 8607 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝐴𝑥)
31 zzlesq 10860 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2))
3231adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ≤ (𝑥↑2))
3332, 10breqtrrd 4075 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥𝐴)
3415, 14, 16, 30, 33elfzd 10145 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ (-𝐴...𝐴))
3534, 10jca 306 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)))
363anim1i 340 . . . . . 6 ((𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)) → (𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)))
3735, 36impbii 126 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)))
3837rexbii2 2518 . . . 4 (∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2) ↔ ∃𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2))
3938dcbii 842 . . 3 (DECID𝑥 ∈ ℤ 𝐴 = (𝑥↑2) ↔ DECID𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2))
409, 39sylibr 134 . 2 (𝐴 ∈ ℕ0DECID𝑥 ∈ ℤ 𝐴 = (𝑥↑2))
41 eqeq1 2213 . . . . 5 (𝑛 = 𝐴 → (𝑛 = (𝑥↑2) ↔ 𝐴 = (𝑥↑2)))
4241rexbidv 2508 . . . 4 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2) ↔ ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2)))
43 4sqexercise1.s . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2)}
4442, 43elab2g 2921 . . 3 (𝐴 ∈ ℕ0 → (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2)))
4544dcbid 840 . 2 (𝐴 ∈ ℕ0 → (DECID 𝐴𝑆DECID𝑥 ∈ ℤ 𝐴 = (𝑥↑2)))
4640, 45mpbird 167 1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2177  {cab 2192  wrex 2486   class class class wbr 4047  (class class class)co 5951  cc 7930  cr 7931  cle 8115  -cneg 8251  2c2 9094  0cn0 9302  cz 9379  ...cfz 10137  cexp 10690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator