Proof of Theorem 4sqexercise1
| Step | Hyp | Ref
 | Expression | 
| 1 |   | nn0negz 9360 | 
. . . 4
⊢ (𝐴 ∈ ℕ0
→ -𝐴 ∈
ℤ) | 
| 2 |   | nn0z 9346 | 
. . . 4
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) | 
| 3 |   | elfzelz 10100 | 
. . . . . . 7
⊢ (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ) | 
| 4 | 3 | adantl 277 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ) | 
| 5 |   | zsqcl 10702 | 
. . . . . 6
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℤ) | 
| 6 | 4, 5 | syl 14 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ) | 
| 7 |   | zdceq 9401 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ) →
DECID 𝐴 =
(𝑥↑2)) | 
| 8 | 2, 6, 7 | syl2an2r 595 | 
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → DECID 𝐴 = (𝑥↑2)) | 
| 9 | 1, 2, 8 | exfzdc 10316 | 
. . 3
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2)) | 
| 10 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 = (𝑥↑2)) | 
| 11 |   | zsqcl2 10709 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℕ0) | 
| 12 | 11 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (𝑥↑2) ∈
ℕ0) | 
| 13 | 10, 12 | eqeltrd 2273 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈
ℕ0) | 
| 14 | 13 | nn0zd 9446 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℤ) | 
| 15 | 14 | znegcld 9450 | 
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝐴 ∈ ℤ) | 
| 16 |   | simpl 109 | 
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ ℤ) | 
| 17 |   | zre 9330 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℝ) | 
| 18 | 17 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ ℝ) | 
| 19 | 13 | nn0red 9303 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℝ) | 
| 20 |   | znegcl 9357 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → -𝑥 ∈
ℤ) | 
| 21 |   | zzlesq 10800 | 
. . . . . . . . . . . . 13
⊢ (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2)) | 
| 22 | 20, 21 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2)) | 
| 23 | 22 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ (-𝑥↑2)) | 
| 24 |   | zcn 9331 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) | 
| 25 |   | sqneg 10690 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2)) | 
| 26 | 24, 25 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → (-𝑥↑2) = (𝑥↑2)) | 
| 27 | 26 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (-𝑥↑2) = (𝑥↑2)) | 
| 28 | 23, 27 | breqtrd 4059 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ (𝑥↑2)) | 
| 29 | 28, 10 | breqtrrd 4061 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ 𝐴) | 
| 30 | 18, 19, 29 | lenegcon1d 8554 | 
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝐴 ≤ 𝑥) | 
| 31 |   | zzlesq 10800 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2)) | 
| 32 | 31 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ≤ (𝑥↑2)) | 
| 33 | 32, 10 | breqtrrd 4061 | 
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ≤ 𝐴) | 
| 34 | 15, 14, 16, 30, 33 | elfzd 10091 | 
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ (-𝐴...𝐴)) | 
| 35 | 34, 10 | jca 306 | 
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2))) | 
| 36 | 3 | anim1i 340 | 
. . . . . 6
⊢ ((𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)) → (𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2))) | 
| 37 | 35, 36 | impbii 126 | 
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2))) | 
| 38 | 37 | rexbii2 2508 | 
. . . 4
⊢
(∃𝑥 ∈
ℤ 𝐴 = (𝑥↑2) ↔ ∃𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2)) | 
| 39 | 38 | dcbii 841 | 
. . 3
⊢
(DECID ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2) ↔ DECID
∃𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2)) | 
| 40 | 9, 39 | sylibr 134 | 
. 2
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2)) | 
| 41 |   | eqeq1 2203 | 
. . . . 5
⊢ (𝑛 = 𝐴 → (𝑛 = (𝑥↑2) ↔ 𝐴 = (𝑥↑2))) | 
| 42 | 41 | rexbidv 2498 | 
. . . 4
⊢ (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2) ↔ ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2))) | 
| 43 |   | 4sqexercise1.s | 
. . . 4
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2)} | 
| 44 | 42, 43 | elab2g 2911 | 
. . 3
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2))) | 
| 45 | 44 | dcbid 839 | 
. 2
⊢ (𝐴 ∈ ℕ0
→ (DECID 𝐴 ∈ 𝑆 ↔ DECID ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2))) | 
| 46 | 40, 45 | mpbird 167 | 
1
⊢ (𝐴 ∈ ℕ0
→ DECID 𝐴 ∈ 𝑆) |