ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise1 GIF version

Theorem 4sqexercise1 12441
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12443. (Contributed by Jim Kingdon, 25-May-2025.)
Hypothesis
Ref Expression
4sqexercise1.s 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2)}
Assertion
Ref Expression
4sqexercise1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Distinct variable group:   𝐴,𝑛,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑛)

Proof of Theorem 4sqexercise1
StepHypRef Expression
1 nn0negz 9322 . . . 4 (𝐴 ∈ ℕ0 → -𝐴 ∈ ℤ)
2 nn0z 9308 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
3 elfzelz 10061 . . . . . . 7 (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ)
43adantl 277 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ)
5 zsqcl 10631 . . . . . 6 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
64, 5syl 14 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ)
7 zdceq 9363 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ) → DECID 𝐴 = (𝑥↑2))
82, 6, 7syl2an2r 595 . . . 4 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID 𝐴 = (𝑥↑2))
91, 2, 8exfzdc 10276 . . 3 (𝐴 ∈ ℕ0DECID𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2))
10 simpr 110 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 = (𝑥↑2))
11 zsqcl2 10638 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
1211adantr 276 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (𝑥↑2) ∈ ℕ0)
1310, 12eqeltrd 2266 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℕ0)
1413nn0zd 9408 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℤ)
1514znegcld 9412 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝐴 ∈ ℤ)
16 simpl 109 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ ℤ)
17 zre 9292 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
1817adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ ℝ)
1913nn0red 9265 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℝ)
20 znegcl 9319 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
21 zzlesq 10729 . . . . . . . . . . . . 13 (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
2220, 21syl 14 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
2322adantr 276 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ (-𝑥↑2))
24 zcn 9293 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
25 sqneg 10619 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2))
2624, 25syl 14 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (-𝑥↑2) = (𝑥↑2))
2726adantr 276 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (-𝑥↑2) = (𝑥↑2))
2823, 27breqtrd 4047 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ (𝑥↑2))
2928, 10breqtrrd 4049 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥𝐴)
3018, 19, 29lenegcon1d 8519 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝐴𝑥)
31 zzlesq 10729 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2))
3231adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ≤ (𝑥↑2))
3332, 10breqtrrd 4049 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥𝐴)
3415, 14, 16, 30, 33elfzd 10052 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ (-𝐴...𝐴))
3534, 10jca 306 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)))
363anim1i 340 . . . . . 6 ((𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)) → (𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)))
3735, 36impbii 126 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)))
3837rexbii2 2501 . . . 4 (∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2) ↔ ∃𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2))
3938dcbii 841 . . 3 (DECID𝑥 ∈ ℤ 𝐴 = (𝑥↑2) ↔ DECID𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2))
409, 39sylibr 134 . 2 (𝐴 ∈ ℕ0DECID𝑥 ∈ ℤ 𝐴 = (𝑥↑2))
41 eqeq1 2196 . . . . 5 (𝑛 = 𝐴 → (𝑛 = (𝑥↑2) ↔ 𝐴 = (𝑥↑2)))
4241rexbidv 2491 . . . 4 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2) ↔ ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2)))
43 4sqexercise1.s . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2)}
4442, 43elab2g 2899 . . 3 (𝐴 ∈ ℕ0 → (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2)))
4544dcbid 839 . 2 (𝐴 ∈ ℕ0 → (DECID 𝐴𝑆DECID𝑥 ∈ ℤ 𝐴 = (𝑥↑2)))
4640, 45mpbird 167 1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2160  {cab 2175  wrex 2469   class class class wbr 4021  (class class class)co 5900  cc 7844  cr 7845  cle 8028  -cneg 8164  2c2 9005  0cn0 9211  cz 9288  ...cfz 10044  cexp 10559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-n0 9212  df-z 9289  df-uz 9564  df-fz 10045  df-fzo 10179  df-seqfrec 10485  df-exp 10560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator