Proof of Theorem 4sqexercise1
Step | Hyp | Ref
| Expression |
1 | | nn0negz 9322 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ -𝐴 ∈
ℤ) |
2 | | nn0z 9308 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
3 | | elfzelz 10061 |
. . . . . . 7
⊢ (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ) |
4 | 3 | adantl 277 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ) |
5 | | zsqcl 10631 |
. . . . . 6
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℤ) |
6 | 4, 5 | syl 14 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ) |
7 | | zdceq 9363 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ) →
DECID 𝐴 =
(𝑥↑2)) |
8 | 2, 6, 7 | syl2an2r 595 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → DECID 𝐴 = (𝑥↑2)) |
9 | 1, 2, 8 | exfzdc 10276 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2)) |
10 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 = (𝑥↑2)) |
11 | | zsqcl2 10638 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℕ0) |
12 | 11 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (𝑥↑2) ∈
ℕ0) |
13 | 10, 12 | eqeltrd 2266 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈
ℕ0) |
14 | 13 | nn0zd 9408 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℤ) |
15 | 14 | znegcld 9412 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝐴 ∈ ℤ) |
16 | | simpl 109 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ ℤ) |
17 | | zre 9292 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℝ) |
18 | 17 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ ℝ) |
19 | 13 | nn0red 9265 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℝ) |
20 | | znegcl 9319 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → -𝑥 ∈
ℤ) |
21 | | zzlesq 10729 |
. . . . . . . . . . . . 13
⊢ (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2)) |
22 | 20, 21 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2)) |
23 | 22 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ (-𝑥↑2)) |
24 | | zcn 9293 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
25 | | sqneg 10619 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2)) |
26 | 24, 25 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → (-𝑥↑2) = (𝑥↑2)) |
27 | 26 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (-𝑥↑2) = (𝑥↑2)) |
28 | 23, 27 | breqtrd 4047 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ (𝑥↑2)) |
29 | 28, 10 | breqtrrd 4049 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ 𝐴) |
30 | 18, 19, 29 | lenegcon1d 8519 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝐴 ≤ 𝑥) |
31 | | zzlesq 10729 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2)) |
32 | 31 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ≤ (𝑥↑2)) |
33 | 32, 10 | breqtrrd 4049 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ≤ 𝐴) |
34 | 15, 14, 16, 30, 33 | elfzd 10052 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ (-𝐴...𝐴)) |
35 | 34, 10 | jca 306 |
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2))) |
36 | 3 | anim1i 340 |
. . . . . 6
⊢ ((𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)) → (𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2))) |
37 | 35, 36 | impbii 126 |
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2))) |
38 | 37 | rexbii2 2501 |
. . . 4
⊢
(∃𝑥 ∈
ℤ 𝐴 = (𝑥↑2) ↔ ∃𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2)) |
39 | 38 | dcbii 841 |
. . 3
⊢
(DECID ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2) ↔ DECID
∃𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2)) |
40 | 9, 39 | sylibr 134 |
. 2
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2)) |
41 | | eqeq1 2196 |
. . . . 5
⊢ (𝑛 = 𝐴 → (𝑛 = (𝑥↑2) ↔ 𝐴 = (𝑥↑2))) |
42 | 41 | rexbidv 2491 |
. . . 4
⊢ (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2) ↔ ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2))) |
43 | | 4sqexercise1.s |
. . . 4
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2)} |
44 | 42, 43 | elab2g 2899 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2))) |
45 | 44 | dcbid 839 |
. 2
⊢ (𝐴 ∈ ℕ0
→ (DECID 𝐴 ∈ 𝑆 ↔ DECID ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2))) |
46 | 40, 45 | mpbird 167 |
1
⊢ (𝐴 ∈ ℕ0
→ DECID 𝐴 ∈ 𝑆) |