ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise1 GIF version

Theorem 4sqexercise1 12567
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12569. (Contributed by Jim Kingdon, 25-May-2025.)
Hypothesis
Ref Expression
4sqexercise1.s 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2)}
Assertion
Ref Expression
4sqexercise1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Distinct variable group:   𝐴,𝑛,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑛)

Proof of Theorem 4sqexercise1
StepHypRef Expression
1 nn0negz 9360 . . . 4 (𝐴 ∈ ℕ0 → -𝐴 ∈ ℤ)
2 nn0z 9346 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
3 elfzelz 10100 . . . . . . 7 (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ)
43adantl 277 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ)
5 zsqcl 10702 . . . . . 6 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
64, 5syl 14 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ)
7 zdceq 9401 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ) → DECID 𝐴 = (𝑥↑2))
82, 6, 7syl2an2r 595 . . . 4 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID 𝐴 = (𝑥↑2))
91, 2, 8exfzdc 10316 . . 3 (𝐴 ∈ ℕ0DECID𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2))
10 simpr 110 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 = (𝑥↑2))
11 zsqcl2 10709 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
1211adantr 276 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (𝑥↑2) ∈ ℕ0)
1310, 12eqeltrd 2273 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℕ0)
1413nn0zd 9446 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℤ)
1514znegcld 9450 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝐴 ∈ ℤ)
16 simpl 109 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ ℤ)
17 zre 9330 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
1817adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ ℝ)
1913nn0red 9303 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝐴 ∈ ℝ)
20 znegcl 9357 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
21 zzlesq 10800 . . . . . . . . . . . . 13 (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
2220, 21syl 14 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
2322adantr 276 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ (-𝑥↑2))
24 zcn 9331 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
25 sqneg 10690 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2))
2624, 25syl 14 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (-𝑥↑2) = (𝑥↑2))
2726adantr 276 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (-𝑥↑2) = (𝑥↑2))
2823, 27breqtrd 4059 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥 ≤ (𝑥↑2))
2928, 10breqtrrd 4061 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝑥𝐴)
3018, 19, 29lenegcon1d 8554 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → -𝐴𝑥)
31 zzlesq 10800 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2))
3231adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ≤ (𝑥↑2))
3332, 10breqtrrd 4061 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥𝐴)
3415, 14, 16, 30, 33elfzd 10091 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → 𝑥 ∈ (-𝐴...𝐴))
3534, 10jca 306 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) → (𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)))
363anim1i 340 . . . . . 6 ((𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)) → (𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)))
3735, 36impbii 126 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝐴 = (𝑥↑2)) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ 𝐴 = (𝑥↑2)))
3837rexbii2 2508 . . . 4 (∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2) ↔ ∃𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2))
3938dcbii 841 . . 3 (DECID𝑥 ∈ ℤ 𝐴 = (𝑥↑2) ↔ DECID𝑥 ∈ (-𝐴...𝐴)𝐴 = (𝑥↑2))
409, 39sylibr 134 . 2 (𝐴 ∈ ℕ0DECID𝑥 ∈ ℤ 𝐴 = (𝑥↑2))
41 eqeq1 2203 . . . . 5 (𝑛 = 𝐴 → (𝑛 = (𝑥↑2) ↔ 𝐴 = (𝑥↑2)))
4241rexbidv 2498 . . . 4 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2) ↔ ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2)))
43 4sqexercise1.s . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ 𝑛 = (𝑥↑2)}
4442, 43elab2g 2911 . . 3 (𝐴 ∈ ℕ0 → (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ 𝐴 = (𝑥↑2)))
4544dcbid 839 . 2 (𝐴 ∈ ℕ0 → (DECID 𝐴𝑆DECID𝑥 ∈ ℤ 𝐴 = (𝑥↑2)))
4640, 45mpbird 167 1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  {cab 2182  wrex 2476   class class class wbr 4033  (class class class)co 5922  cc 7877  cr 7878  cle 8062  -cneg 8198  2c2 9041  0cn0 9249  cz 9326  ...cfz 10083  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator