ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfeq4g GIF version

Theorem seqfeq4g 10676
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq4.m (𝜑𝑁 ∈ (ℤ𝑀))
seqfeq4.f ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqfeq4g.f (𝜑𝐹𝑉)
seqfeq4g.p (𝜑+𝑊)
seqfeq4g.q (𝜑𝑄𝑋)
seqfeq4.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq4.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq4g (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem seqfeq4g
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfeq4.m . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10154 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5576 . . . . 5 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑀))
5 fveq2 5576 . . . . 5 (𝑤 = 𝑀 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑀))
64, 5eqeq12d 2220 . . . 4 (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀)))
76imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀))))
8 fveq2 5576 . . . . 5 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑘))
9 fveq2 5576 . . . . 5 (𝑤 = 𝑘 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑘))
108, 9eqeq12d 2220 . . . 4 (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)))
1110imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘))))
12 fveq2 5576 . . . . 5 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘(𝑘 + 1)))
13 fveq2 5576 . . . . 5 (𝑤 = (𝑘 + 1) → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))
1412, 13eqeq12d 2220 . . . 4 (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))))
16 fveq2 5576 . . . . 5 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑁))
17 fveq2 5576 . . . . 5 (𝑤 = 𝑁 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑁))
1816, 17eqeq12d 2220 . . . 4 (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)))
1918imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))))
20 eluzel2 9653 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
211, 20syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
22 seqfeq4g.f . . . . . . . 8 (𝜑𝐹𝑉)
2322adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐹𝑉)
24 vex 2775 . . . . . . 7 𝑥 ∈ V
25 fvexg 5595 . . . . . . 7 ((𝐹𝑉𝑥 ∈ V) → (𝐹𝑥) ∈ V)
2623, 24, 25sylancl 413 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
27 seqfeq4g.p . . . . . . 7 (𝜑+𝑊)
28 simprr 531 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V)
29 ovexg 5978 . . . . . . 7 ((𝑥 ∈ V ∧ +𝑊𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V)
3024, 27, 28, 29mp3an2ani 1357 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V)
3121, 26, 30seq3-1 10607 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
32 seqfeq4g.q . . . . . . 7 (𝜑𝑄𝑋)
33 ovexg 5978 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑄𝑋𝑦 ∈ V) → (𝑥𝑄𝑦) ∈ V)
3424, 32, 28, 33mp3an2ani 1357 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V)
3521, 26, 34seq3-1 10607 . . . . 5 (𝜑 → (seq𝑀(𝑄, 𝐹)‘𝑀) = (𝐹𝑀))
3631, 35eqtr4d 2241 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀))
3736a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀)))
38 simpr 110 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘))
3938oveq1d 5959 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
40 oveq2 5952 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑘 + 1)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
41 oveq2 5952 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑘 + 1)) → ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
4240, 41eqeq12d 2220 . . . . . . . . . 10 (𝑦 = (𝐹‘(𝑘 + 1)) → (((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦) ↔ ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1)))))
43 oveq1 5951 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (𝑥 + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦))
44 oveq1 5951 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (𝑥𝑄𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦))
4543, 44eqeq12d 2220 . . . . . . . . . . . 12 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → ((𝑥 + 𝑦) = (𝑥𝑄𝑦) ↔ ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦)))
4645ralbidv 2506 . . . . . . . . . . 11 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (∀𝑦𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦) ↔ ∀𝑦𝑆 ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦)))
47 seqfeq4.id . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
4847ralrimivva 2588 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦))
4948adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦))
50 elfzouz 10273 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
5150adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (ℤ𝑀))
5226adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
53 simpll 527 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝜑)
5421ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑀 ∈ ℤ)
553elfzelzd 10148 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
5655ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑁 ∈ ℤ)
57 elfzelz 10147 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑘) → 𝑥 ∈ ℤ)
5857adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ ℤ)
59 elfzle1 10149 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑘) → 𝑀𝑥)
6059adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑀𝑥)
6158zred 9495 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ ℝ)
62 elfzoelz 10269 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
6362ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘 ∈ ℤ)
6463zred 9495 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘 ∈ ℝ)
6556zred 9495 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑁 ∈ ℝ)
66 elfzle2 10150 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑀...𝑘) → 𝑥𝑘)
6766adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥𝑘)
68 elfzofz 10285 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
69 elfzle2 10150 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
7068, 69syl 14 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑀..^𝑁) → 𝑘𝑁)
7170ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘𝑁)
7261, 64, 65, 67, 71letrd 8196 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥𝑁)
7354, 56, 58, 60, 72elfzd 10138 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ (𝑀...𝑁))
74 seqfeq4.f . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
7553, 73, 74syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → (𝐹𝑥) ∈ 𝑆)
76 seqfeq4.cl . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
7747, 76eqeltrrd 2283 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
7877adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
79 ssv 3215 . . . . . . . . . . . . 13 𝑆 ⊆ V
8079a1i 9 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑆 ⊆ V)
8134adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V)
8251, 52, 75, 78, 80, 81seq3clss 10616 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (seq𝑀(𝑄, 𝐹)‘𝑘) ∈ 𝑆)
8346, 49, 82rspcdva 2882 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑦𝑆 ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦))
84 fveq2 5576 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
8584eleq1d 2274 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑆))
8674ralrimiva 2579 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
8786adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
88 fzofzp1 10356 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
8988adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
9085, 87, 89rspcdva 2882 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑘 + 1)) ∈ 𝑆)
9142, 83, 90rspcdva 2882 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
9291adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
9339, 92eqtrd 2238 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
9450ad2antlr 489 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → 𝑘 ∈ (ℤ𝑀))
9526ad4ant14 514 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
9630ad4ant14 514 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V)
9794, 95, 96seq3p1 10610 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
9834ad4ant14 514 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V)
9994, 95, 98seq3p1 10610 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
10093, 97, 993eqtr4d 2248 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))
101100ex 115 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))))
102101expcom 116 . . . 4 (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))))
103102a2d 26 . . 3 (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))))
1047, 11, 15, 19, 37, 103fzind2 10368 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)))
1053, 104mpcom 36 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  wss 3166   class class class wbr 4044  cfv 5271  (class class class)co 5944  1c1 7926   + caddc 7928  cle 8108  cz 9372  cuz 9648  ...cfz 10130  ..^cfzo 10264  seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265  df-seqfrec 10593
This theorem is referenced by:  gsumpropd2  13225
  Copyright terms: Public domain W3C validator