ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfeq4g GIF version

Theorem seqfeq4g 10640
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq4.m (𝜑𝑁 ∈ (ℤ𝑀))
seqfeq4.f ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqfeq4g.f (𝜑𝐹𝑉)
seqfeq4g.p (𝜑+𝑊)
seqfeq4g.q (𝜑𝑄𝑋)
seqfeq4.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq4.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq4g (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem seqfeq4g
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfeq4.m . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10124 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5561 . . . . 5 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑀))
5 fveq2 5561 . . . . 5 (𝑤 = 𝑀 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑀))
64, 5eqeq12d 2211 . . . 4 (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀)))
76imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀))))
8 fveq2 5561 . . . . 5 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑘))
9 fveq2 5561 . . . . 5 (𝑤 = 𝑘 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑘))
108, 9eqeq12d 2211 . . . 4 (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)))
1110imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘))))
12 fveq2 5561 . . . . 5 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘(𝑘 + 1)))
13 fveq2 5561 . . . . 5 (𝑤 = (𝑘 + 1) → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))
1412, 13eqeq12d 2211 . . . 4 (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))))
16 fveq2 5561 . . . . 5 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑁))
17 fveq2 5561 . . . . 5 (𝑤 = 𝑁 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑁))
1816, 17eqeq12d 2211 . . . 4 (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)))
1918imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))))
20 eluzel2 9623 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
211, 20syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
22 seqfeq4g.f . . . . . . . 8 (𝜑𝐹𝑉)
2322adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐹𝑉)
24 vex 2766 . . . . . . 7 𝑥 ∈ V
25 fvexg 5580 . . . . . . 7 ((𝐹𝑉𝑥 ∈ V) → (𝐹𝑥) ∈ V)
2623, 24, 25sylancl 413 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
27 seqfeq4g.p . . . . . . 7 (𝜑+𝑊)
28 simprr 531 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V)
29 ovexg 5959 . . . . . . 7 ((𝑥 ∈ V ∧ +𝑊𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V)
3024, 27, 28, 29mp3an2ani 1355 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V)
3121, 26, 30seq3-1 10571 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
32 seqfeq4g.q . . . . . . 7 (𝜑𝑄𝑋)
33 ovexg 5959 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑄𝑋𝑦 ∈ V) → (𝑥𝑄𝑦) ∈ V)
3424, 32, 28, 33mp3an2ani 1355 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V)
3521, 26, 34seq3-1 10571 . . . . 5 (𝜑 → (seq𝑀(𝑄, 𝐹)‘𝑀) = (𝐹𝑀))
3631, 35eqtr4d 2232 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀))
3736a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀)))
38 simpr 110 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘))
3938oveq1d 5940 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
40 oveq2 5933 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑘 + 1)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
41 oveq2 5933 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑘 + 1)) → ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
4240, 41eqeq12d 2211 . . . . . . . . . 10 (𝑦 = (𝐹‘(𝑘 + 1)) → (((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦) ↔ ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1)))))
43 oveq1 5932 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (𝑥 + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦))
44 oveq1 5932 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (𝑥𝑄𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦))
4543, 44eqeq12d 2211 . . . . . . . . . . . 12 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → ((𝑥 + 𝑦) = (𝑥𝑄𝑦) ↔ ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦)))
4645ralbidv 2497 . . . . . . . . . . 11 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (∀𝑦𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦) ↔ ∀𝑦𝑆 ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦)))
47 seqfeq4.id . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
4847ralrimivva 2579 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦))
4948adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦))
50 elfzouz 10243 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
5150adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (ℤ𝑀))
5226adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
53 simpll 527 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝜑)
5421ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑀 ∈ ℤ)
553elfzelzd 10118 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
5655ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑁 ∈ ℤ)
57 elfzelz 10117 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑘) → 𝑥 ∈ ℤ)
5857adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ ℤ)
59 elfzle1 10119 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑘) → 𝑀𝑥)
6059adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑀𝑥)
6158zred 9465 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ ℝ)
62 elfzoelz 10239 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
6362ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘 ∈ ℤ)
6463zred 9465 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘 ∈ ℝ)
6556zred 9465 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑁 ∈ ℝ)
66 elfzle2 10120 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑀...𝑘) → 𝑥𝑘)
6766adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥𝑘)
68 elfzofz 10255 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
69 elfzle2 10120 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
7068, 69syl 14 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑀..^𝑁) → 𝑘𝑁)
7170ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘𝑁)
7261, 64, 65, 67, 71letrd 8167 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥𝑁)
7354, 56, 58, 60, 72elfzd 10108 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ (𝑀...𝑁))
74 seqfeq4.f . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
7553, 73, 74syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → (𝐹𝑥) ∈ 𝑆)
76 seqfeq4.cl . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
7747, 76eqeltrrd 2274 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
7877adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
79 ssv 3206 . . . . . . . . . . . . 13 𝑆 ⊆ V
8079a1i 9 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑆 ⊆ V)
8134adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V)
8251, 52, 75, 78, 80, 81seq3clss 10580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (seq𝑀(𝑄, 𝐹)‘𝑘) ∈ 𝑆)
8346, 49, 82rspcdva 2873 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑦𝑆 ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦))
84 fveq2 5561 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
8584eleq1d 2265 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑆))
8674ralrimiva 2570 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
8786adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
88 fzofzp1 10320 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
8988adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
9085, 87, 89rspcdva 2873 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑘 + 1)) ∈ 𝑆)
9142, 83, 90rspcdva 2873 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
9291adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
9339, 92eqtrd 2229 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
9450ad2antlr 489 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → 𝑘 ∈ (ℤ𝑀))
9526ad4ant14 514 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
9630ad4ant14 514 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V)
9794, 95, 96seq3p1 10574 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
9834ad4ant14 514 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V)
9994, 95, 98seq3p1 10574 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
10093, 97, 993eqtr4d 2239 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))
101100ex 115 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))))
102101expcom 116 . . . 4 (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))))
103102a2d 26 . . 3 (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))))
1047, 11, 15, 19, 37, 103fzind2 10332 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)))
1053, 104mpcom 36 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  wss 3157   class class class wbr 4034  cfv 5259  (class class class)co 5925  1c1 7897   + caddc 7899  cle 8079  cz 9343  cuz 9618  ...cfz 10100  ..^cfzo 10234  seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557
This theorem is referenced by:  gsumpropd2  13095
  Copyright terms: Public domain W3C validator