ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfeq4g GIF version

Theorem seqfeq4g 10748
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq4.m (𝜑𝑁 ∈ (ℤ𝑀))
seqfeq4.f ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqfeq4g.f (𝜑𝐹𝑉)
seqfeq4g.p (𝜑+𝑊)
seqfeq4g.q (𝜑𝑄𝑋)
seqfeq4.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq4.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq4g (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem seqfeq4g
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfeq4.m . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10224 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5626 . . . . 5 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑀))
5 fveq2 5626 . . . . 5 (𝑤 = 𝑀 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑀))
64, 5eqeq12d 2244 . . . 4 (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀)))
76imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀))))
8 fveq2 5626 . . . . 5 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑘))
9 fveq2 5626 . . . . 5 (𝑤 = 𝑘 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑘))
108, 9eqeq12d 2244 . . . 4 (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)))
1110imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘))))
12 fveq2 5626 . . . . 5 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘(𝑘 + 1)))
13 fveq2 5626 . . . . 5 (𝑤 = (𝑘 + 1) → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))
1412, 13eqeq12d 2244 . . . 4 (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))))
16 fveq2 5626 . . . . 5 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑁))
17 fveq2 5626 . . . . 5 (𝑤 = 𝑁 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑁))
1816, 17eqeq12d 2244 . . . 4 (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)))
1918imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))))
20 eluzel2 9723 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
211, 20syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
22 seqfeq4g.f . . . . . . . 8 (𝜑𝐹𝑉)
2322adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐹𝑉)
24 vex 2802 . . . . . . 7 𝑥 ∈ V
25 fvexg 5645 . . . . . . 7 ((𝐹𝑉𝑥 ∈ V) → (𝐹𝑥) ∈ V)
2623, 24, 25sylancl 413 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
27 seqfeq4g.p . . . . . . 7 (𝜑+𝑊)
28 simprr 531 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V)
29 ovexg 6034 . . . . . . 7 ((𝑥 ∈ V ∧ +𝑊𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V)
3024, 27, 28, 29mp3an2ani 1378 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V)
3121, 26, 30seq3-1 10679 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
32 seqfeq4g.q . . . . . . 7 (𝜑𝑄𝑋)
33 ovexg 6034 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑄𝑋𝑦 ∈ V) → (𝑥𝑄𝑦) ∈ V)
3424, 32, 28, 33mp3an2ani 1378 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V)
3521, 26, 34seq3-1 10679 . . . . 5 (𝜑 → (seq𝑀(𝑄, 𝐹)‘𝑀) = (𝐹𝑀))
3631, 35eqtr4d 2265 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀))
3736a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀)))
38 simpr 110 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘))
3938oveq1d 6015 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
40 oveq2 6008 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑘 + 1)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
41 oveq2 6008 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑘 + 1)) → ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
4240, 41eqeq12d 2244 . . . . . . . . . 10 (𝑦 = (𝐹‘(𝑘 + 1)) → (((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦) ↔ ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1)))))
43 oveq1 6007 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (𝑥 + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦))
44 oveq1 6007 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (𝑥𝑄𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦))
4543, 44eqeq12d 2244 . . . . . . . . . . . 12 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → ((𝑥 + 𝑦) = (𝑥𝑄𝑦) ↔ ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦)))
4645ralbidv 2530 . . . . . . . . . . 11 (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (∀𝑦𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦) ↔ ∀𝑦𝑆 ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦)))
47 seqfeq4.id . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
4847ralrimivva 2612 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦))
4948adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦))
50 elfzouz 10343 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
5150adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (ℤ𝑀))
5226adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
53 simpll 527 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝜑)
5421ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑀 ∈ ℤ)
553elfzelzd 10218 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
5655ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑁 ∈ ℤ)
57 elfzelz 10217 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑘) → 𝑥 ∈ ℤ)
5857adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ ℤ)
59 elfzle1 10219 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀...𝑘) → 𝑀𝑥)
6059adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑀𝑥)
6158zred 9565 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ ℝ)
62 elfzoelz 10339 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
6362ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘 ∈ ℤ)
6463zred 9565 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘 ∈ ℝ)
6556zred 9565 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑁 ∈ ℝ)
66 elfzle2 10220 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑀...𝑘) → 𝑥𝑘)
6766adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥𝑘)
68 elfzofz 10355 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
69 elfzle2 10220 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
7068, 69syl 14 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑀..^𝑁) → 𝑘𝑁)
7170ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘𝑁)
7261, 64, 65, 67, 71letrd 8266 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥𝑁)
7354, 56, 58, 60, 72elfzd 10208 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ (𝑀...𝑁))
74 seqfeq4.f . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
7553, 73, 74syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → (𝐹𝑥) ∈ 𝑆)
76 seqfeq4.cl . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
7747, 76eqeltrrd 2307 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
7877adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
79 ssv 3246 . . . . . . . . . . . . 13 𝑆 ⊆ V
8079a1i 9 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑆 ⊆ V)
8134adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V)
8251, 52, 75, 78, 80, 81seq3clss 10688 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (seq𝑀(𝑄, 𝐹)‘𝑘) ∈ 𝑆)
8346, 49, 82rspcdva 2912 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑦𝑆 ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦))
84 fveq2 5626 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
8584eleq1d 2298 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑆))
8674ralrimiva 2603 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
8786adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
88 fzofzp1 10428 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
8988adantl 277 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
9085, 87, 89rspcdva 2912 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑘 + 1)) ∈ 𝑆)
9142, 83, 90rspcdva 2912 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
9291adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
9339, 92eqtrd 2262 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
9450ad2antlr 489 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → 𝑘 ∈ (ℤ𝑀))
9526ad4ant14 514 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
9630ad4ant14 514 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V)
9794, 95, 96seq3p1 10682 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
9834ad4ant14 514 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V)
9994, 95, 98seq3p1 10682 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))
10093, 97, 993eqtr4d 2272 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))
101100ex 115 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))))
102101expcom 116 . . . 4 (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))))
103102a2d 26 . . 3 (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))))
1047, 11, 15, 19, 37, 103fzind2 10440 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)))
1053, 104mpcom 36 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  wss 3197   class class class wbr 4082  cfv 5317  (class class class)co 6000  1c1 7996   + caddc 7998  cle 8178  cz 9442  cuz 9718  ...cfz 10200  ..^cfzo 10334  seqcseq 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665
This theorem is referenced by:  gsumpropd2  13421
  Copyright terms: Public domain W3C validator