Step | Hyp | Ref
| Expression |
1 | | seqfeq4.m |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 10098 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | fveq2 5554 |
. . . . 5
⊢ (𝑤 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑀)) |
5 | | fveq2 5554 |
. . . . 5
⊢ (𝑤 = 𝑀 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑀)) |
6 | 4, 5 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀))) |
7 | 6 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀)))) |
8 | | fveq2 5554 |
. . . . 5
⊢ (𝑤 = 𝑘 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑘)) |
9 | | fveq2 5554 |
. . . . 5
⊢ (𝑤 = 𝑘 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑘)) |
10 | 8, 9 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘))) |
11 | 10 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)))) |
12 | | fveq2 5554 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘(𝑘 + 1))) |
13 | | fveq2 5554 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))) |
14 | 12, 13 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))) |
15 | 14 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))))) |
16 | | fveq2 5554 |
. . . . 5
⊢ (𝑤 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑁)) |
17 | | fveq2 5554 |
. . . . 5
⊢ (𝑤 = 𝑁 → (seq𝑀(𝑄, 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑁)) |
18 | 16, 17 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))) |
19 | 18 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀(𝑄, 𝐹)‘𝑤)) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)))) |
20 | | eluzel2 9597 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
21 | 1, 20 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
22 | | seqfeq4g.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
23 | 22 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝐹 ∈ 𝑉) |
24 | | vex 2763 |
. . . . . . 7
⊢ 𝑥 ∈ V |
25 | | fvexg 5573 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝐹‘𝑥) ∈ V) |
26 | 23, 24, 25 | sylancl 413 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
27 | | seqfeq4g.p |
. . . . . . 7
⊢ (𝜑 → + ∈ 𝑊) |
28 | | simprr 531 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑦 ∈ V) |
29 | | ovexg 5952 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ + ∈ 𝑊 ∧ 𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V) |
30 | 24, 27, 28, 29 | mp3an2ani 1355 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V) |
31 | 21, 26, 30 | seq3-1 10533 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
32 | | seqfeq4g.q |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ 𝑋) |
33 | | ovexg 5952 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ 𝑄 ∈ 𝑋 ∧ 𝑦 ∈ V) → (𝑥𝑄𝑦) ∈ V) |
34 | 24, 32, 28, 33 | mp3an2ani 1355 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V) |
35 | 21, 26, 34 | seq3-1 10533 |
. . . . 5
⊢ (𝜑 → (seq𝑀(𝑄, 𝐹)‘𝑀) = (𝐹‘𝑀)) |
36 | 31, 35 | eqtr4d 2229 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀)) |
37 | 36 | a1i 9 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq𝑀(𝑄, 𝐹)‘𝑀))) |
38 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) |
39 | 38 | oveq1d 5933 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
40 | | oveq2 5926 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘(𝑘 + 1)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
41 | | oveq2 5926 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘(𝑘 + 1)) → ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1)))) |
42 | 40, 41 | eqeq12d 2208 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘(𝑘 + 1)) → (((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦) ↔ ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1))))) |
43 | | oveq1 5925 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (𝑥 + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦)) |
44 | | oveq1 5925 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (𝑥𝑄𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦)) |
45 | 43, 44 | eqeq12d 2208 |
. . . . . . . . . . . 12
⊢ (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → ((𝑥 + 𝑦) = (𝑥𝑄𝑦) ↔ ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦))) |
46 | 45 | ralbidv 2494 |
. . . . . . . . . . 11
⊢ (𝑥 = (seq𝑀(𝑄, 𝐹)‘𝑘) → (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦) ↔ ∀𝑦 ∈ 𝑆 ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦))) |
47 | | seqfeq4.id |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
48 | 47 | ralrimivva 2576 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
49 | 48 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
50 | | elfzouz 10217 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
51 | 50 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
52 | 26 | adantlr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
53 | | simpll 527 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝜑) |
54 | 21 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑀 ∈ ℤ) |
55 | 3 | elfzelzd 10092 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℤ) |
56 | 55 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑁 ∈ ℤ) |
57 | | elfzelz 10091 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑀...𝑘) → 𝑥 ∈ ℤ) |
58 | 57 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ ℤ) |
59 | | elfzle1 10093 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑀...𝑘) → 𝑀 ≤ 𝑥) |
60 | 59 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑀 ≤ 𝑥) |
61 | 58 | zred 9439 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ ℝ) |
62 | | elfzoelz 10213 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ) |
63 | 62 | ad2antlr 489 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘 ∈ ℤ) |
64 | 63 | zred 9439 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘 ∈ ℝ) |
65 | 56 | zred 9439 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑁 ∈ ℝ) |
66 | | elfzle2 10094 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑀...𝑘) → 𝑥 ≤ 𝑘) |
67 | 66 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ≤ 𝑘) |
68 | | elfzofz 10229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁)) |
69 | | elfzle2 10094 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ≤ 𝑁) |
70 | 68, 69 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ≤ 𝑁) |
71 | 70 | ad2antlr 489 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑘 ≤ 𝑁) |
72 | 61, 64, 65, 67, 71 | letrd 8143 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ≤ 𝑁) |
73 | 54, 56, 58, 60, 72 | elfzd 10082 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → 𝑥 ∈ (𝑀...𝑁)) |
74 | | seqfeq4.f |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
75 | 53, 73, 74 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑘)) → (𝐹‘𝑥) ∈ 𝑆) |
76 | | seqfeq4.cl |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
77 | 47, 76 | eqeltrrd 2271 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
78 | 77 | adantlr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
79 | | ssv 3201 |
. . . . . . . . . . . . 13
⊢ 𝑆 ⊆ V |
80 | 79 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑆 ⊆ V) |
81 | 34 | adantlr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V) |
82 | 51, 52, 75, 78, 80, 81 | seq3clss 10542 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (seq𝑀(𝑄, 𝐹)‘𝑘) ∈ 𝑆) |
83 | 46, 49, 82 | rspcdva 2869 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑦 ∈ 𝑆 ((seq𝑀(𝑄, 𝐹)‘𝑘) + 𝑦) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄𝑦)) |
84 | | fveq2 5554 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) |
85 | 84 | eleq1d 2262 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑘 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑆)) |
86 | 74 | ralrimiva 2567 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ 𝑆) |
87 | 86 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ 𝑆) |
88 | | fzofzp1 10294 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
89 | 88 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
90 | 85, 87, 89 | rspcdva 2869 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑘 + 1)) ∈ 𝑆) |
91 | 42, 83, 90 | rspcdva 2869 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1)))) |
92 | 91 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀(𝑄, 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1)))) |
93 | 39, 92 | eqtrd 2226 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1)))) |
94 | 50 | ad2antlr 489 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
95 | 26 | ad4ant14 514 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
96 | 30 | ad4ant14 514 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V) |
97 | 94, 95, 96 | seq3p1 10536 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
98 | 34 | ad4ant14 514 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝑄𝑦) ∈ V) |
99 | 94, 95, 98 | seq3p1 10536 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)) = ((seq𝑀(𝑄, 𝐹)‘𝑘)𝑄(𝐹‘(𝑘 + 1)))) |
100 | 93, 97, 99 | 3eqtr4d 2236 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))) |
101 | 100 | ex 115 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1)))) |
102 | 101 | expcom 116 |
. . . 4
⊢ (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))))) |
103 | 102 | a2d 26 |
. . 3
⊢ (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀(𝑄, 𝐹)‘𝑘)) → (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = (seq𝑀(𝑄, 𝐹)‘(𝑘 + 1))))) |
104 | 7, 11, 15, 19, 37, 103 | fzind2 10306 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))) |
105 | 3, 104 | mpcom 36 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁)) |