![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfz5 | GIF version |
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.) |
Ref | Expression |
---|---|
elfz5 | ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9601 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
2 | eluzel2 9597 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | jca 306 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
4 | elfz 10080 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
5 | 4 | 3expa 1205 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
6 | 3, 5 | sylan 283 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
7 | eluzle 9604 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝐾) | |
8 | 7 | biantrurd 305 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | 8 | adantr 276 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
10 | 6, 9 | bitr4d 191 | 1 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ≤ cle 8055 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-neg 8193 df-z 9318 df-uz 9593 df-fz 10075 |
This theorem is referenced by: fzsplit2 10116 fznn0sub2 10194 iseqf1olemjpcl 10579 iseqf1olemqpcl 10580 seq3f1oleml 10587 bcval5 10834 seq3coll 10913 fsum0diaglem 11583 mertenslemi1 11678 fprodmul 11734 eulerthlemrprm 12367 eulerthlema 12368 pcfac 12488 1arith 12505 lgsne0 15154 |
Copyright terms: Public domain | W3C validator |