![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfz5 | GIF version |
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.) |
Ref | Expression |
---|---|
elfz5 | ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9127 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
2 | eluzel2 9123 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | jca 301 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
4 | elfz 9579 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
5 | 4 | 3expa 1146 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
6 | 3, 5 | sylan 278 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
7 | eluzle 9130 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝐾) | |
8 | 7 | biantrurd 300 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | 8 | adantr 271 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
10 | 6, 9 | bitr4d 190 | 1 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1445 class class class wbr 3867 ‘cfv 5049 (class class class)co 5690 ≤ cle 7620 ℤcz 8848 ℤ≥cuz 9118 ...cfz 9573 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-neg 7753 df-z 8849 df-uz 9119 df-fz 9574 |
This theorem is referenced by: fzsplit2 9613 fznn0sub2 9688 iseqf1olemjpcl 10045 iseqf1olemqpcl 10046 seq3f1oleml 10053 bcval5 10286 seq3coll 10362 fsum0diaglem 10983 mertenslemi1 11078 |
Copyright terms: Public domain | W3C validator |