Proof of Theorem 4sqexercise2
Step | Hyp | Ref
| Expression |
1 | | nn0negz 9322 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ -𝐴 ∈
ℤ) |
2 | | nn0z 9308 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
3 | 1 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ) |
4 | 2 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) |
5 | 4 | adantr 276 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) |
6 | | elfzelz 10061 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ) |
7 | 6 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ) |
8 | | zsqcl 10631 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℤ) |
9 | 7, 8 | syl 14 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ) |
10 | | elfzelz 10061 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ) |
11 | 10 | adantl 277 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ) |
12 | | zsqcl 10631 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈
ℤ) |
13 | 11, 12 | syl 14 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈ ℤ) |
14 | 9, 13 | zaddcld 9414 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈ ℤ) |
15 | | zdceq 9363 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℤ) →
DECID 𝐴 =
((𝑥↑2) + (𝑦↑2))) |
16 | 5, 14, 15 | syl2anc 411 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2))) |
17 | 3, 4, 16 | exfzdc 10276 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → DECID ∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))) |
18 | 3 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴 ∈ ℤ) |
19 | 4 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℤ) |
20 | | simprl 529 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℤ) |
21 | 20 | zred 9410 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℝ) |
22 | 19 | zred 9410 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℝ) |
23 | 21 | renegcld 8372 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ∈ ℝ) |
24 | | zsqcl2 10638 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈
ℕ0) |
25 | 20, 24 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈
ℕ0) |
26 | 25 | nn0red 9265 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℝ) |
27 | | znegcl 9319 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℤ → -𝑦 ∈
ℤ) |
28 | | zzlesq 10729 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2)) |
29 | 27, 28 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2)) |
30 | | zcn 9293 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) |
31 | | sqneg 10619 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2)) |
32 | 30, 31 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℤ → (-𝑦↑2) = (𝑦↑2)) |
33 | 29, 32 | breqtrd 4047 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℤ → -𝑦 ≤ (𝑦↑2)) |
34 | 20, 33 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ≤ (𝑦↑2)) |
35 | 6 | ad2antlr 489 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℤ) |
36 | | zsqcl2 10638 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℕ0) |
37 | 35, 36 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑥↑2) ∈
ℕ0) |
38 | | nn0addge2 9258 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦↑2) ∈ ℝ ∧
(𝑥↑2) ∈
ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
39 | 26, 37, 38 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
40 | | simprr 531 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 = ((𝑥↑2) + (𝑦↑2))) |
41 | 39, 40 | breqtrrd 4049 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ 𝐴) |
42 | 23, 26, 22, 34, 41 | letrd 8116 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ≤ 𝐴) |
43 | 21, 22, 42 | lenegcon1d 8519 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴 ≤ 𝑦) |
44 | | zzlesq 10729 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2)) |
45 | 20, 44 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ≤ (𝑦↑2)) |
46 | 21, 26, 22, 45, 41 | letrd 8116 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ≤ 𝐴) |
47 | 18, 19, 20, 43, 46 | elfzd 10052 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ (-𝐴...𝐴)) |
48 | 47, 40 | jca 306 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) |
49 | 48 | ex 115 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))) |
50 | 10 | anim1i 340 |
. . . . . . . 8
⊢ ((𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) |
51 | 49, 50 | impbid1 142 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))) |
52 | 51 | rexbidv2 2493 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2)))) |
53 | 52 | dcbid 839 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (DECID ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID
∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2)))) |
54 | 17, 53 | mpbird 167 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → DECID ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) |
55 | 1, 2, 54 | exfzdc 10276 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) |
56 | 1 | ad3antrrr 492 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ) |
57 | 2 | ad3antrrr 492 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ) |
58 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) |
59 | 58 | zred 9410 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ) |
60 | 57 | zred 9410 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) |
61 | 59 | renegcld 8372 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ) |
62 | 59 | resqcld 10720 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ) |
63 | 58 | znegcld 9412 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ) |
64 | | zzlesq 10729 |
. . . . . . . . . . . . . 14
⊢ (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2)) |
65 | 63, 64 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2)) |
66 | 58 | zcnd 9411 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ) |
67 | | sqneg 10619 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2)) |
68 | 66, 67 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2)) |
69 | 65, 68 | breqtrd 4047 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2)) |
70 | 24 | ad3antlr 493 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈
ℕ0) |
71 | | nn0addge1 9257 |
. . . . . . . . . . . . . 14
⊢ (((𝑥↑2) ∈ ℝ ∧
(𝑦↑2) ∈
ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
72 | 62, 70, 71 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2))) |
73 | | simplr 528 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 = ((𝑥↑2) + (𝑦↑2))) |
74 | 72, 73 | breqtrrd 4049 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴) |
75 | 61, 62, 60, 69, 74 | letrd 8116 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ 𝐴) |
76 | 59, 60, 75 | lenegcon1d 8519 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴 ≤ 𝑥) |
77 | | zzlesq 10729 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2)) |
78 | 77 | adantl 277 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2)) |
79 | 59, 62, 60, 78, 74 | letrd 8116 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ 𝐴) |
80 | 56, 57, 58, 76, 79 | elfzd 10052 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴)) |
81 | 80 | ex 115 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴))) |
82 | 81, 6 | impbid1 142 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))) |
83 | 82 | rexlimdva2 2610 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0
→ (∃𝑦 ∈
ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))) |
84 | 83 | pm5.32rd 451 |
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ ((𝑥 ∈ ℤ
∧ ∃𝑦 ∈
ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))) |
85 | 84 | rexbidv2 2493 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ (∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) |
86 | 85 | dcbid 839 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ (DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID
∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) |
87 | 55, 86 | mpbird 167 |
. 2
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) |
88 | | eqeq1 2196 |
. . . . 5
⊢ (𝑛 = 𝐴 → (𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) |
89 | 88 | 2rexbidv 2515 |
. . . 4
⊢ (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) |
90 | | 4sqexercise2.s |
. . . 4
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))} |
91 | 89, 90 | elab2g 2899 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) |
92 | 91 | dcbid 839 |
. 2
⊢ (𝐴 ∈ ℕ0
→ (DECID 𝐴 ∈ 𝑆 ↔ DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) |
93 | 87, 92 | mpbird 167 |
1
⊢ (𝐴 ∈ ℕ0
→ DECID 𝐴 ∈ 𝑆) |