ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise2 GIF version

Theorem 4sqexercise2 12888
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12889. (Contributed by Jim Kingdon, 30-May-2025.)
Hypothesis
Ref Expression
4sqexercise2.s 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))}
Assertion
Ref Expression
4sqexercise2 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Distinct variable group:   𝐴,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)

Proof of Theorem 4sqexercise2
StepHypRef Expression
1 nn0negz 9448 . . . 4 (𝐴 ∈ ℕ0 → -𝐴 ∈ ℤ)
2 nn0z 9434 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
31adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
42adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
54adantr 276 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
6 elfzelz 10189 . . . . . . . . . 10 (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ)
76ad2antlr 489 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ)
8 zsqcl 10799 . . . . . . . . 9 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
97, 8syl 14 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ)
10 elfzelz 10189 . . . . . . . . . 10 (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ)
1110adantl 277 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ)
12 zsqcl 10799 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
1311, 12syl 14 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈ ℤ)
149, 13zaddcld 9541 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈ ℤ)
15 zdceq 9490 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℤ) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2)))
165, 14, 15syl2anc 411 . . . . . 6 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2)))
173, 4, 16exfzdc 10413 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2)))
183adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴 ∈ ℤ)
194adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℤ)
20 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℤ)
2120zred 9537 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℝ)
2219zred 9537 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℝ)
2321renegcld 8494 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ∈ ℝ)
24 zsqcl2 10806 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
2520, 24syl 14 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℕ0)
2625nn0red 9391 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℝ)
27 znegcl 9445 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
28 zzlesq 10897 . . . . . . . . . . . . . . . 16 (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
2927, 28syl 14 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
30 zcn 9419 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
31 sqneg 10787 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2))
3230, 31syl 14 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (-𝑦↑2) = (𝑦↑2))
3329, 32breqtrd 4088 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → -𝑦 ≤ (𝑦↑2))
3420, 33syl 14 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ≤ (𝑦↑2))
356ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℤ)
36 zsqcl2 10806 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑥↑2) ∈ ℕ0)
38 nn0addge2 9384 . . . . . . . . . . . . . . 15 (((𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
3926, 37, 38syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
40 simprr 531 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 = ((𝑥↑2) + (𝑦↑2)))
4139, 40breqtrrd 4090 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ 𝐴)
4223, 26, 22, 34, 41letrd 8238 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦𝐴)
4321, 22, 42lenegcon1d 8642 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴𝑦)
44 zzlesq 10897 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2))
4520, 44syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ≤ (𝑦↑2))
4621, 26, 22, 45, 41letrd 8238 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦𝐴)
4718, 19, 20, 43, 46elfzd 10180 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ (-𝐴...𝐴))
4847, 40jca 306 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
4948ex 115 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
5010anim1i 340 . . . . . . . 8 ((𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
5149, 50impbid1 142 . . . . . . 7 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
5251rexbidv2 2513 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))))
5352dcbid 842 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (DECID𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))))
5417, 53mpbird 167 . . . 4 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
551, 2, 54exfzdc 10413 . . 3 (𝐴 ∈ ℕ0DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
561ad3antrrr 492 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ)
572ad3antrrr 492 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
58 simpr 110 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
5958zred 9537 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
6057zred 9537 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
6159renegcld 8494 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ)
6259resqcld 10888 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ)
6358znegcld 9539 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
64 zzlesq 10897 . . . . . . . . . . . . . 14 (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
6563, 64syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2))
6658zcnd 9538 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
67 sqneg 10787 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2))
6866, 67syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2))
6965, 68breqtrd 4088 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2))
7024ad3antlr 493 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
71 nn0addge1 9383 . . . . . . . . . . . . . 14 (((𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
7262, 70, 71syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
73 simplr 528 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 = ((𝑥↑2) + (𝑦↑2)))
7472, 73breqtrrd 4090 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴)
7561, 62, 60, 69, 74letrd 8238 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥𝐴)
7659, 60, 75lenegcon1d 8642 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴𝑥)
77 zzlesq 10897 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2))
7877adantl 277 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2))
7959, 62, 60, 78, 74letrd 8238 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥𝐴)
8056, 57, 58, 76, 79elfzd 10180 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴))
8180ex 115 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴)))
8281, 6impbid1 142 . . . . . . 7 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
8382rexlimdva2 2631 . . . . . 6 (𝐴 ∈ ℕ0 → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))))
8483pm5.32rd 451 . . . . 5 (𝐴 ∈ ℕ0 → ((𝑥 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
8584rexbidv2 2513 . . . 4 (𝐴 ∈ ℕ0 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
8685dcbid 842 . . 3 (𝐴 ∈ ℕ0 → (DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
8755, 86mpbird 167 . 2 (𝐴 ∈ ℕ0DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
88 eqeq1 2216 . . . . 5 (𝑛 = 𝐴 → (𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
89882rexbidv 2535 . . . 4 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
90 4sqexercise2.s . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))}
9189, 90elab2g 2930 . . 3 (𝐴 ∈ ℕ0 → (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
9291dcbid 842 . 2 (𝐴 ∈ ℕ0 → (DECID 𝐴𝑆DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
9387, 92mpbird 167 1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 838   = wceq 1375  wcel 2180  {cab 2195  wrex 2489   class class class wbr 4062  (class class class)co 5974  cc 7965  cr 7966   + caddc 7970  cle 8150  -cneg 8286  2c2 9129  0cn0 9337  cz 9414  ...cfz 10172  cexp 10727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator