ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise2 GIF version

Theorem 4sqexercise2 12540
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12541. (Contributed by Jim Kingdon, 30-May-2025.)
Hypothesis
Ref Expression
4sqexercise2.s 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))}
Assertion
Ref Expression
4sqexercise2 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Distinct variable group:   𝐴,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)

Proof of Theorem 4sqexercise2
StepHypRef Expression
1 nn0negz 9354 . . . 4 (𝐴 ∈ ℕ0 → -𝐴 ∈ ℤ)
2 nn0z 9340 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
31adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
42adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
54adantr 276 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
6 elfzelz 10094 . . . . . . . . . 10 (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ)
76ad2antlr 489 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ)
8 zsqcl 10684 . . . . . . . . 9 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
97, 8syl 14 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ)
10 elfzelz 10094 . . . . . . . . . 10 (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ)
1110adantl 277 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ)
12 zsqcl 10684 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
1311, 12syl 14 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈ ℤ)
149, 13zaddcld 9446 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈ ℤ)
15 zdceq 9395 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℤ) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2)))
165, 14, 15syl2anc 411 . . . . . 6 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2)))
173, 4, 16exfzdc 10310 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2)))
183adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴 ∈ ℤ)
194adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℤ)
20 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℤ)
2120zred 9442 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℝ)
2219zred 9442 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℝ)
2321renegcld 8401 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ∈ ℝ)
24 zsqcl2 10691 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
2520, 24syl 14 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℕ0)
2625nn0red 9297 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℝ)
27 znegcl 9351 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
28 zzlesq 10782 . . . . . . . . . . . . . . . 16 (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
2927, 28syl 14 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
30 zcn 9325 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
31 sqneg 10672 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2))
3230, 31syl 14 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (-𝑦↑2) = (𝑦↑2))
3329, 32breqtrd 4056 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → -𝑦 ≤ (𝑦↑2))
3420, 33syl 14 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ≤ (𝑦↑2))
356ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℤ)
36 zsqcl2 10691 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑥↑2) ∈ ℕ0)
38 nn0addge2 9290 . . . . . . . . . . . . . . 15 (((𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
3926, 37, 38syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
40 simprr 531 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 = ((𝑥↑2) + (𝑦↑2)))
4139, 40breqtrrd 4058 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ 𝐴)
4223, 26, 22, 34, 41letrd 8145 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦𝐴)
4321, 22, 42lenegcon1d 8548 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴𝑦)
44 zzlesq 10782 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2))
4520, 44syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ≤ (𝑦↑2))
4621, 26, 22, 45, 41letrd 8145 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦𝐴)
4718, 19, 20, 43, 46elfzd 10085 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ (-𝐴...𝐴))
4847, 40jca 306 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
4948ex 115 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
5010anim1i 340 . . . . . . . 8 ((𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
5149, 50impbid1 142 . . . . . . 7 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
5251rexbidv2 2497 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))))
5352dcbid 839 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (DECID𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))))
5417, 53mpbird 167 . . . 4 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
551, 2, 54exfzdc 10310 . . 3 (𝐴 ∈ ℕ0DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
561ad3antrrr 492 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ)
572ad3antrrr 492 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
58 simpr 110 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
5958zred 9442 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
6057zred 9442 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
6159renegcld 8401 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ)
6259resqcld 10773 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ)
6358znegcld 9444 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
64 zzlesq 10782 . . . . . . . . . . . . . 14 (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
6563, 64syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2))
6658zcnd 9443 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
67 sqneg 10672 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2))
6866, 67syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2))
6965, 68breqtrd 4056 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2))
7024ad3antlr 493 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
71 nn0addge1 9289 . . . . . . . . . . . . . 14 (((𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
7262, 70, 71syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
73 simplr 528 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 = ((𝑥↑2) + (𝑦↑2)))
7472, 73breqtrrd 4058 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴)
7561, 62, 60, 69, 74letrd 8145 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥𝐴)
7659, 60, 75lenegcon1d 8548 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴𝑥)
77 zzlesq 10782 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2))
7877adantl 277 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2))
7959, 62, 60, 78, 74letrd 8145 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥𝐴)
8056, 57, 58, 76, 79elfzd 10085 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴))
8180ex 115 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴)))
8281, 6impbid1 142 . . . . . . 7 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
8382rexlimdva2 2614 . . . . . 6 (𝐴 ∈ ℕ0 → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))))
8483pm5.32rd 451 . . . . 5 (𝐴 ∈ ℕ0 → ((𝑥 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
8584rexbidv2 2497 . . . 4 (𝐴 ∈ ℕ0 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
8685dcbid 839 . . 3 (𝐴 ∈ ℕ0 → (DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
8755, 86mpbird 167 . 2 (𝐴 ∈ ℕ0DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
88 eqeq1 2200 . . . . 5 (𝑛 = 𝐴 → (𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
89882rexbidv 2519 . . . 4 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
90 4sqexercise2.s . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))}
9189, 90elab2g 2908 . . 3 (𝐴 ∈ ℕ0 → (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
9291dcbid 839 . 2 (𝐴 ∈ ℕ0 → (DECID 𝐴𝑆DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
9387, 92mpbird 167 1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  {cab 2179  wrex 2473   class class class wbr 4030  (class class class)co 5919  cc 7872  cr 7873   + caddc 7877  cle 8057  -cneg 8193  2c2 9035  0cn0 9243  cz 9320  ...cfz 10077  cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator