ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise2 GIF version

Theorem 4sqexercise2 12593
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12594. (Contributed by Jim Kingdon, 30-May-2025.)
Hypothesis
Ref Expression
4sqexercise2.s 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))}
Assertion
Ref Expression
4sqexercise2 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Distinct variable group:   𝐴,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)

Proof of Theorem 4sqexercise2
StepHypRef Expression
1 nn0negz 9377 . . . 4 (𝐴 ∈ ℕ0 → -𝐴 ∈ ℤ)
2 nn0z 9363 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
31adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
42adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
54adantr 276 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
6 elfzelz 10117 . . . . . . . . . 10 (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ)
76ad2antlr 489 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ)
8 zsqcl 10719 . . . . . . . . 9 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
97, 8syl 14 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ)
10 elfzelz 10117 . . . . . . . . . 10 (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ)
1110adantl 277 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ)
12 zsqcl 10719 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
1311, 12syl 14 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈ ℤ)
149, 13zaddcld 9469 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈ ℤ)
15 zdceq 9418 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℤ) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2)))
165, 14, 15syl2anc 411 . . . . . 6 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2)))
173, 4, 16exfzdc 10333 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2)))
183adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴 ∈ ℤ)
194adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℤ)
20 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℤ)
2120zred 9465 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℝ)
2219zred 9465 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℝ)
2321renegcld 8423 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ∈ ℝ)
24 zsqcl2 10726 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
2520, 24syl 14 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℕ0)
2625nn0red 9320 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℝ)
27 znegcl 9374 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
28 zzlesq 10817 . . . . . . . . . . . . . . . 16 (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
2927, 28syl 14 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
30 zcn 9348 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
31 sqneg 10707 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2))
3230, 31syl 14 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (-𝑦↑2) = (𝑦↑2))
3329, 32breqtrd 4060 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → -𝑦 ≤ (𝑦↑2))
3420, 33syl 14 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ≤ (𝑦↑2))
356ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℤ)
36 zsqcl2 10726 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑥↑2) ∈ ℕ0)
38 nn0addge2 9313 . . . . . . . . . . . . . . 15 (((𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
3926, 37, 38syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
40 simprr 531 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 = ((𝑥↑2) + (𝑦↑2)))
4139, 40breqtrrd 4062 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ 𝐴)
4223, 26, 22, 34, 41letrd 8167 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦𝐴)
4321, 22, 42lenegcon1d 8571 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴𝑦)
44 zzlesq 10817 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2))
4520, 44syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ≤ (𝑦↑2))
4621, 26, 22, 45, 41letrd 8167 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦𝐴)
4718, 19, 20, 43, 46elfzd 10108 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ (-𝐴...𝐴))
4847, 40jca 306 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
4948ex 115 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
5010anim1i 340 . . . . . . . 8 ((𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
5149, 50impbid1 142 . . . . . . 7 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
5251rexbidv2 2500 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))))
5352dcbid 839 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (DECID𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))))
5417, 53mpbird 167 . . . 4 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
551, 2, 54exfzdc 10333 . . 3 (𝐴 ∈ ℕ0DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
561ad3antrrr 492 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ)
572ad3antrrr 492 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
58 simpr 110 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
5958zred 9465 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
6057zred 9465 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
6159renegcld 8423 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ)
6259resqcld 10808 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ)
6358znegcld 9467 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
64 zzlesq 10817 . . . . . . . . . . . . . 14 (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
6563, 64syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2))
6658zcnd 9466 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
67 sqneg 10707 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2))
6866, 67syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2))
6965, 68breqtrd 4060 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2))
7024ad3antlr 493 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
71 nn0addge1 9312 . . . . . . . . . . . . . 14 (((𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
7262, 70, 71syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
73 simplr 528 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 = ((𝑥↑2) + (𝑦↑2)))
7472, 73breqtrrd 4062 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴)
7561, 62, 60, 69, 74letrd 8167 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥𝐴)
7659, 60, 75lenegcon1d 8571 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴𝑥)
77 zzlesq 10817 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2))
7877adantl 277 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2))
7959, 62, 60, 78, 74letrd 8167 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥𝐴)
8056, 57, 58, 76, 79elfzd 10108 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴))
8180ex 115 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴)))
8281, 6impbid1 142 . . . . . . 7 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
8382rexlimdva2 2617 . . . . . 6 (𝐴 ∈ ℕ0 → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))))
8483pm5.32rd 451 . . . . 5 (𝐴 ∈ ℕ0 → ((𝑥 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
8584rexbidv2 2500 . . . 4 (𝐴 ∈ ℕ0 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
8685dcbid 839 . . 3 (𝐴 ∈ ℕ0 → (DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
8755, 86mpbird 167 . 2 (𝐴 ∈ ℕ0DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
88 eqeq1 2203 . . . . 5 (𝑛 = 𝐴 → (𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
89882rexbidv 2522 . . . 4 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
90 4sqexercise2.s . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))}
9189, 90elab2g 2911 . . 3 (𝐴 ∈ ℕ0 → (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
9291dcbid 839 . 2 (𝐴 ∈ ℕ0 → (DECID 𝐴𝑆DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
9387, 92mpbird 167 1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  {cab 2182  wrex 2476   class class class wbr 4034  (class class class)co 5925  cc 7894  cr 7895   + caddc 7899  cle 8079  -cneg 8215  2c2 9058  0cn0 9266  cz 9343  ...cfz 10100  cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator