ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise2 GIF version

Theorem 4sqexercise2 12930
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12931. (Contributed by Jim Kingdon, 30-May-2025.)
Hypothesis
Ref Expression
4sqexercise2.s 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))}
Assertion
Ref Expression
4sqexercise2 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Distinct variable group:   𝐴,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)

Proof of Theorem 4sqexercise2
StepHypRef Expression
1 nn0negz 9488 . . . 4 (𝐴 ∈ ℕ0 → -𝐴 ∈ ℤ)
2 nn0z 9474 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
31adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
42adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
54adantr 276 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
6 elfzelz 10229 . . . . . . . . . 10 (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ)
76ad2antlr 489 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ)
8 zsqcl 10840 . . . . . . . . 9 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
97, 8syl 14 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ)
10 elfzelz 10229 . . . . . . . . . 10 (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ)
1110adantl 277 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ)
12 zsqcl 10840 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
1311, 12syl 14 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈ ℤ)
149, 13zaddcld 9581 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈ ℤ)
15 zdceq 9530 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℤ) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2)))
165, 14, 15syl2anc 411 . . . . . 6 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2)))
173, 4, 16exfzdc 10454 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2)))
183adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴 ∈ ℤ)
194adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℤ)
20 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℤ)
2120zred 9577 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℝ)
2219zred 9577 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℝ)
2321renegcld 8534 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ∈ ℝ)
24 zsqcl2 10847 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
2520, 24syl 14 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℕ0)
2625nn0red 9431 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℝ)
27 znegcl 9485 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
28 zzlesq 10938 . . . . . . . . . . . . . . . 16 (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
2927, 28syl 14 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
30 zcn 9459 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
31 sqneg 10828 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2))
3230, 31syl 14 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (-𝑦↑2) = (𝑦↑2))
3329, 32breqtrd 4109 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → -𝑦 ≤ (𝑦↑2))
3420, 33syl 14 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ≤ (𝑦↑2))
356ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℤ)
36 zsqcl2 10847 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑥↑2) ∈ ℕ0)
38 nn0addge2 9424 . . . . . . . . . . . . . . 15 (((𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
3926, 37, 38syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
40 simprr 531 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 = ((𝑥↑2) + (𝑦↑2)))
4139, 40breqtrrd 4111 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ 𝐴)
4223, 26, 22, 34, 41letrd 8278 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦𝐴)
4321, 22, 42lenegcon1d 8682 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴𝑦)
44 zzlesq 10938 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2))
4520, 44syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ≤ (𝑦↑2))
4621, 26, 22, 45, 41letrd 8278 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦𝐴)
4718, 19, 20, 43, 46elfzd 10220 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ (-𝐴...𝐴))
4847, 40jca 306 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
4948ex 115 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
5010anim1i 340 . . . . . . . 8 ((𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
5149, 50impbid1 142 . . . . . . 7 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
5251rexbidv2 2533 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))))
5352dcbid 843 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (DECID𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))))
5417, 53mpbird 167 . . . 4 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
551, 2, 54exfzdc 10454 . . 3 (𝐴 ∈ ℕ0DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
561ad3antrrr 492 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ)
572ad3antrrr 492 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
58 simpr 110 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
5958zred 9577 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
6057zred 9577 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
6159renegcld 8534 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ)
6259resqcld 10929 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ)
6358znegcld 9579 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
64 zzlesq 10938 . . . . . . . . . . . . . 14 (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
6563, 64syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2))
6658zcnd 9578 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
67 sqneg 10828 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2))
6866, 67syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2))
6965, 68breqtrd 4109 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2))
7024ad3antlr 493 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
71 nn0addge1 9423 . . . . . . . . . . . . . 14 (((𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
7262, 70, 71syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
73 simplr 528 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 = ((𝑥↑2) + (𝑦↑2)))
7472, 73breqtrrd 4111 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴)
7561, 62, 60, 69, 74letrd 8278 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥𝐴)
7659, 60, 75lenegcon1d 8682 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴𝑥)
77 zzlesq 10938 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2))
7877adantl 277 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2))
7959, 62, 60, 78, 74letrd 8278 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥𝐴)
8056, 57, 58, 76, 79elfzd 10220 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴))
8180ex 115 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴)))
8281, 6impbid1 142 . . . . . . 7 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
8382rexlimdva2 2651 . . . . . 6 (𝐴 ∈ ℕ0 → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))))
8483pm5.32rd 451 . . . . 5 (𝐴 ∈ ℕ0 → ((𝑥 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
8584rexbidv2 2533 . . . 4 (𝐴 ∈ ℕ0 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
8685dcbid 843 . . 3 (𝐴 ∈ ℕ0 → (DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
8755, 86mpbird 167 . 2 (𝐴 ∈ ℕ0DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
88 eqeq1 2236 . . . . 5 (𝑛 = 𝐴 → (𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
89882rexbidv 2555 . . . 4 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
90 4sqexercise2.s . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))}
9189, 90elab2g 2950 . . 3 (𝐴 ∈ ℕ0 → (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
9291dcbid 843 . 2 (𝐴 ∈ ℕ0 → (DECID 𝐴𝑆DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
9387, 92mpbird 167 1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wcel 2200  {cab 2215  wrex 2509   class class class wbr 4083  (class class class)co 6007  cc 8005  cr 8006   + caddc 8010  cle 8190  -cneg 8326  2c2 9169  0cn0 9377  cz 9454  ...cfz 10212  cexp 10768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator