Proof of Theorem 4sqexercise2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | nn0negz 9360 | 
. . . 4
⊢ (𝐴 ∈ ℕ0
→ -𝐴 ∈
ℤ) | 
| 2 |   | nn0z 9346 | 
. . . 4
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) | 
| 3 | 1 | adantr 276 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ) | 
| 4 | 2 | adantr 276 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) | 
| 5 | 4 | adantr 276 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ) | 
| 6 |   | elfzelz 10100 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ) | 
| 7 | 6 | ad2antlr 489 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ) | 
| 8 |   | zsqcl 10702 | 
. . . . . . . . 9
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℤ) | 
| 9 | 7, 8 | syl 14 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ) | 
| 10 |   | elfzelz 10100 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ) | 
| 11 | 10 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ) | 
| 12 |   | zsqcl 10702 | 
. . . . . . . . 9
⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈
ℤ) | 
| 13 | 11, 12 | syl 14 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈ ℤ) | 
| 14 | 9, 13 | zaddcld 9452 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈ ℤ) | 
| 15 |   | zdceq 9401 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℤ) →
DECID 𝐴 =
((𝑥↑2) + (𝑦↑2))) | 
| 16 | 5, 14, 15 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2))) | 
| 17 | 3, 4, 16 | exfzdc 10316 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → DECID ∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))) | 
| 18 | 3 | adantr 276 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴 ∈ ℤ) | 
| 19 | 4 | adantr 276 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℤ) | 
| 20 |   | simprl 529 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℤ) | 
| 21 | 20 | zred 9448 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℝ) | 
| 22 | 19 | zred 9448 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℝ) | 
| 23 | 21 | renegcld 8406 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ∈ ℝ) | 
| 24 |   | zsqcl2 10709 | 
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈
ℕ0) | 
| 25 | 20, 24 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈
ℕ0) | 
| 26 | 25 | nn0red 9303 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℝ) | 
| 27 |   | znegcl 9357 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℤ → -𝑦 ∈
ℤ) | 
| 28 |   | zzlesq 10800 | 
. . . . . . . . . . . . . . . 16
⊢ (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2)) | 
| 29 | 27, 28 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2)) | 
| 30 |   | zcn 9331 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) | 
| 31 |   | sqneg 10690 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2)) | 
| 32 | 30, 31 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℤ → (-𝑦↑2) = (𝑦↑2)) | 
| 33 | 29, 32 | breqtrd 4059 | 
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℤ → -𝑦 ≤ (𝑦↑2)) | 
| 34 | 20, 33 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ≤ (𝑦↑2)) | 
| 35 | 6 | ad2antlr 489 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℤ) | 
| 36 |   | zsqcl2 10709 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℕ0) | 
| 37 | 35, 36 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑥↑2) ∈
ℕ0) | 
| 38 |   | nn0addge2 9296 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑦↑2) ∈ ℝ ∧
(𝑥↑2) ∈
ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2))) | 
| 39 | 26, 37, 38 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2))) | 
| 40 |   | simprr 531 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 = ((𝑥↑2) + (𝑦↑2))) | 
| 41 | 39, 40 | breqtrrd 4061 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ 𝐴) | 
| 42 | 23, 26, 22, 34, 41 | letrd 8150 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ≤ 𝐴) | 
| 43 | 21, 22, 42 | lenegcon1d 8554 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴 ≤ 𝑦) | 
| 44 |   | zzlesq 10800 | 
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2)) | 
| 45 | 20, 44 | syl 14 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ≤ (𝑦↑2)) | 
| 46 | 21, 26, 22, 45, 41 | letrd 8150 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ≤ 𝐴) | 
| 47 | 18, 19, 20, 43, 46 | elfzd 10091 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ (-𝐴...𝐴)) | 
| 48 | 47, 40 | jca 306 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) | 
| 49 | 48 | ex 115 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))) | 
| 50 | 10 | anim1i 340 | 
. . . . . . . 8
⊢ ((𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) | 
| 51 | 49, 50 | impbid1 142 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))) | 
| 52 | 51 | rexbidv2 2500 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2)))) | 
| 53 | 52 | dcbid 839 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → (DECID ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID
∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2)))) | 
| 54 | 17, 53 | mpbird 167 | 
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝑥 ∈ (-𝐴...𝐴)) → DECID ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) | 
| 55 | 1, 2, 54 | exfzdc 10316 | 
. . 3
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) | 
| 56 | 1 | ad3antrrr 492 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ) | 
| 57 | 2 | ad3antrrr 492 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ) | 
| 58 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | 
| 59 | 58 | zred 9448 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ) | 
| 60 | 57 | zred 9448 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ) | 
| 61 | 59 | renegcld 8406 | 
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ) | 
| 62 | 59 | resqcld 10791 | 
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ) | 
| 63 | 58 | znegcld 9450 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ) | 
| 64 |   | zzlesq 10800 | 
. . . . . . . . . . . . . 14
⊢ (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2)) | 
| 65 | 63, 64 | syl 14 | 
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2)) | 
| 66 | 58 | zcnd 9449 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ) | 
| 67 |   | sqneg 10690 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2)) | 
| 68 | 66, 67 | syl 14 | 
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2)) | 
| 69 | 65, 68 | breqtrd 4059 | 
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2)) | 
| 70 | 24 | ad3antlr 493 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈
ℕ0) | 
| 71 |   | nn0addge1 9295 | 
. . . . . . . . . . . . . 14
⊢ (((𝑥↑2) ∈ ℝ ∧
(𝑦↑2) ∈
ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2))) | 
| 72 | 62, 70, 71 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2))) | 
| 73 |   | simplr 528 | 
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 = ((𝑥↑2) + (𝑦↑2))) | 
| 74 | 72, 73 | breqtrrd 4061 | 
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴) | 
| 75 | 61, 62, 60, 69, 74 | letrd 8150 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ 𝐴) | 
| 76 | 59, 60, 75 | lenegcon1d 8554 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴 ≤ 𝑥) | 
| 77 |   | zzlesq 10800 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2)) | 
| 78 | 77 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2)) | 
| 79 | 59, 62, 60, 78, 74 | letrd 8150 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ 𝐴) | 
| 80 | 56, 57, 58, 76, 79 | elfzd 10091 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴)) | 
| 81 | 80 | ex 115 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴))) | 
| 82 | 81, 6 | impbid1 142 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℕ0
∧ 𝑦 ∈ ℤ)
∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))) | 
| 83 | 82 | rexlimdva2 2617 | 
. . . . . 6
⊢ (𝐴 ∈ ℕ0
→ (∃𝑦 ∈
ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))) | 
| 84 | 83 | pm5.32rd 451 | 
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ ((𝑥 ∈ ℤ
∧ ∃𝑦 ∈
ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))) | 
| 85 | 84 | rexbidv2 2500 | 
. . . 4
⊢ (𝐴 ∈ ℕ0
→ (∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) | 
| 86 | 85 | dcbid 839 | 
. . 3
⊢ (𝐴 ∈ ℕ0
→ (DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID
∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) | 
| 87 | 55, 86 | mpbird 167 | 
. 2
⊢ (𝐴 ∈ ℕ0
→ DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) | 
| 88 |   | eqeq1 2203 | 
. . . . 5
⊢ (𝑛 = 𝐴 → (𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) | 
| 89 | 88 | 2rexbidv 2522 | 
. . . 4
⊢ (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) | 
| 90 |   | 4sqexercise2.s | 
. . . 4
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))} | 
| 91 | 89, 90 | elab2g 2911 | 
. . 3
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) | 
| 92 | 91 | dcbid 839 | 
. 2
⊢ (𝐴 ∈ ℕ0
→ (DECID 𝐴 ∈ 𝑆 ↔ DECID ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) | 
| 93 | 87, 92 | mpbird 167 | 
1
⊢ (𝐴 ∈ ℕ0
→ DECID 𝐴 ∈ 𝑆) |