ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise2 GIF version

Theorem 4sqexercise2 12442
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12443. (Contributed by Jim Kingdon, 30-May-2025.)
Hypothesis
Ref Expression
4sqexercise2.s 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))}
Assertion
Ref Expression
4sqexercise2 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Distinct variable group:   𝐴,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)

Proof of Theorem 4sqexercise2
StepHypRef Expression
1 nn0negz 9322 . . . 4 (𝐴 ∈ ℕ0 → -𝐴 ∈ ℤ)
2 nn0z 9308 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
31adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → -𝐴 ∈ ℤ)
42adantr 276 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
54adantr 276 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝐴 ∈ ℤ)
6 elfzelz 10061 . . . . . . . . . 10 (𝑥 ∈ (-𝐴...𝐴) → 𝑥 ∈ ℤ)
76ad2antlr 489 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑥 ∈ ℤ)
8 zsqcl 10631 . . . . . . . . 9 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
97, 8syl 14 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑥↑2) ∈ ℤ)
10 elfzelz 10061 . . . . . . . . . 10 (𝑦 ∈ (-𝐴...𝐴) → 𝑦 ∈ ℤ)
1110adantl 277 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → 𝑦 ∈ ℤ)
12 zsqcl 10631 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
1311, 12syl 14 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → (𝑦↑2) ∈ ℤ)
149, 13zaddcld 9414 . . . . . . 7 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → ((𝑥↑2) + (𝑦↑2)) ∈ ℤ)
15 zdceq 9363 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝑥↑2) + (𝑦↑2)) ∈ ℤ) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2)))
165, 14, 15syl2anc 411 . . . . . 6 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ 𝑦 ∈ (-𝐴...𝐴)) → DECID 𝐴 = ((𝑥↑2) + (𝑦↑2)))
173, 4, 16exfzdc 10276 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2)))
183adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴 ∈ ℤ)
194adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℤ)
20 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℤ)
2120zred 9410 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℝ)
2219zred 9410 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 ∈ ℝ)
2321renegcld 8372 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ∈ ℝ)
24 zsqcl2 10638 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
2520, 24syl 14 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℕ0)
2625nn0red 9265 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ∈ ℝ)
27 znegcl 9319 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
28 zzlesq 10729 . . . . . . . . . . . . . . . 16 (-𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
2927, 28syl 14 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → -𝑦 ≤ (-𝑦↑2))
30 zcn 9293 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
31 sqneg 10619 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (-𝑦↑2) = (𝑦↑2))
3230, 31syl 14 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (-𝑦↑2) = (𝑦↑2))
3329, 32breqtrd 4047 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → -𝑦 ≤ (𝑦↑2))
3420, 33syl 14 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦 ≤ (𝑦↑2))
356ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℤ)
36 zsqcl2 10638 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑥↑2) ∈ ℕ0)
38 nn0addge2 9258 . . . . . . . . . . . . . . 15 (((𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℕ0) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
3926, 37, 38syl2anc 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
40 simprr 531 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝐴 = ((𝑥↑2) + (𝑦↑2)))
4139, 40breqtrrd 4049 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦↑2) ≤ 𝐴)
4223, 26, 22, 34, 41letrd 8116 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝑦𝐴)
4321, 22, 42lenegcon1d 8519 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → -𝐴𝑦)
44 zzlesq 10729 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ≤ (𝑦↑2))
4520, 44syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ≤ (𝑦↑2))
4621, 26, 22, 45, 41letrd 8116 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦𝐴)
4718, 19, 20, 43, 46elfzd 10052 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ (-𝐴...𝐴))
4847, 40jca 306 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) ∧ (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
4948ex 115 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
5010anim1i 340 . . . . . . . 8 ((𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
5149, 50impbid1 142 . . . . . . 7 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → ((𝑦 ∈ ℤ ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ∈ (-𝐴...𝐴) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
5251rexbidv2 2493 . . . . . 6 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))))
5352dcbid 839 . . . . 5 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → (DECID𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID𝑦 ∈ (-𝐴...𝐴)𝐴 = ((𝑥↑2) + (𝑦↑2))))
5417, 53mpbird 167 . . . 4 ((𝐴 ∈ ℕ0𝑥 ∈ (-𝐴...𝐴)) → DECID𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
551, 2, 54exfzdc 10276 . . 3 (𝐴 ∈ ℕ0DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
561ad3antrrr 492 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴 ∈ ℤ)
572ad3antrrr 492 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
58 simpr 110 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
5958zred 9410 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
6057zred 9410 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℝ)
6159renegcld 8372 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℝ)
6259resqcld 10720 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℝ)
6358znegcld 9412 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
64 zzlesq 10729 . . . . . . . . . . . . . 14 (-𝑥 ∈ ℤ → -𝑥 ≤ (-𝑥↑2))
6563, 64syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (-𝑥↑2))
6658zcnd 9411 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
67 sqneg 10619 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (-𝑥↑2) = (𝑥↑2))
6866, 67syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (-𝑥↑2) = (𝑥↑2))
6965, 68breqtrd 4047 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥 ≤ (𝑥↑2))
7024ad3antlr 493 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑦↑2) ∈ ℕ0)
71 nn0addge1 9257 . . . . . . . . . . . . . 14 (((𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℕ0) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
7262, 70, 71syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ ((𝑥↑2) + (𝑦↑2)))
73 simplr 528 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝐴 = ((𝑥↑2) + (𝑦↑2)))
7472, 73breqtrrd 4049 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ≤ 𝐴)
7561, 62, 60, 69, 74letrd 8116 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝑥𝐴)
7659, 60, 75lenegcon1d 8519 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → -𝐴𝑥)
77 zzlesq 10729 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ≤ (𝑥↑2))
7877adantl 277 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ≤ (𝑥↑2))
7959, 62, 60, 78, 74letrd 8116 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥𝐴)
8056, 57, 58, 76, 79elfzd 10052 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ (-𝐴...𝐴))
8180ex 115 . . . . . . . 8 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ → 𝑥 ∈ (-𝐴...𝐴)))
8281, 6impbid1 142 . . . . . . 7 (((𝐴 ∈ ℕ0𝑦 ∈ ℤ) ∧ 𝐴 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴)))
8382rexlimdva2 2610 . . . . . 6 (𝐴 ∈ ℕ0 → (∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝑥 ∈ ℤ ↔ 𝑥 ∈ (-𝐴...𝐴))))
8483pm5.32rd 451 . . . . 5 (𝐴 ∈ ℕ0 → ((𝑥 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ∈ (-𝐴...𝐴) ∧ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))))
8584rexbidv2 2493 . . . 4 (𝐴 ∈ ℕ0 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
8685dcbid 839 . . 3 (𝐴 ∈ ℕ0 → (DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ DECID𝑥 ∈ (-𝐴...𝐴)∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
8755, 86mpbird 167 . 2 (𝐴 ∈ ℕ0DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
88 eqeq1 2196 . . . . 5 (𝑛 = 𝐴 → (𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
89882rexbidv 2515 . . . 4 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
90 4sqexercise2.s . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑛 = ((𝑥↑2) + (𝑦↑2))}
9189, 90elab2g 2899 . . 3 (𝐴 ∈ ℕ0 → (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
9291dcbid 839 . 2 (𝐴 ∈ ℕ0 → (DECID 𝐴𝑆DECID𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
9387, 92mpbird 167 1 (𝐴 ∈ ℕ0DECID 𝐴𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2160  {cab 2175  wrex 2469   class class class wbr 4021  (class class class)co 5900  cc 7844  cr 7845   + caddc 7849  cle 8028  -cneg 8164  2c2 9005  0cn0 9211  cz 9288  ...cfz 10044  cexp 10559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-n0 9212  df-z 9289  df-uz 9564  df-fz 10045  df-fzo 10179  df-seqfrec 10485  df-exp 10560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator