ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch GIF version

Theorem prarloclemarch 7566
Description: A version of the Archimedean property. This variation is "stronger" than archnqq 7565 in the sense that we provide an integer which is larger than a given rational 𝐴 even after being multiplied by a second rational 𝐵. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
prarloclemarch ((𝐴Q𝐵Q) → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem prarloclemarch
StepHypRef Expression
1 recclnq 7540 . . . 4 (𝐵Q → (*Q𝐵) ∈ Q)
2 mulclnq 7524 . . . 4 ((𝐴Q ∧ (*Q𝐵) ∈ Q) → (𝐴 ·Q (*Q𝐵)) ∈ Q)
31, 2sylan2 286 . . 3 ((𝐴Q𝐵Q) → (𝐴 ·Q (*Q𝐵)) ∈ Q)
4 archnqq 7565 . . 3 ((𝐴 ·Q (*Q𝐵)) ∈ Q → ∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q )
53, 4syl 14 . 2 ((𝐴Q𝐵Q) → ∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q )
6 simpll 527 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → 𝐴Q)
7 1pi 7463 . . . . . . . . . . 11 1oN
8 opelxpi 4725 . . . . . . . . . . 11 ((𝑥N ∧ 1oN) → ⟨𝑥, 1o⟩ ∈ (N × N))
97, 8mpan2 425 . . . . . . . . . 10 (𝑥N → ⟨𝑥, 1o⟩ ∈ (N × N))
10 enqex 7508 . . . . . . . . . . 11 ~Q ∈ V
1110ecelqsi 6699 . . . . . . . . . 10 (⟨𝑥, 1o⟩ ∈ (N × N) → [⟨𝑥, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
129, 11syl 14 . . . . . . . . 9 (𝑥N → [⟨𝑥, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
13 df-nqqs 7496 . . . . . . . . 9 Q = ((N × N) / ~Q )
1412, 13eleqtrrdi 2301 . . . . . . . 8 (𝑥N → [⟨𝑥, 1o⟩] ~QQ)
1514adantl 277 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → [⟨𝑥, 1o⟩] ~QQ)
16 simplr 528 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → 𝐵Q)
17 mulclnq 7524 . . . . . . 7 (([⟨𝑥, 1o⟩] ~QQ𝐵Q) → ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q)
1815, 16, 17syl2anc 411 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q)
1916, 1syl 14 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → (*Q𝐵) ∈ Q)
20 ltmnqg 7549 . . . . . 6 ((𝐴Q ∧ ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q ∧ (*Q𝐵) ∈ Q) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ ((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))))
216, 18, 19, 20syl3anc 1250 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑥N) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ ((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))))
22 mulcomnqg 7531 . . . . . . 7 (((*Q𝐵) ∈ Q𝐴Q) → ((*Q𝐵) ·Q 𝐴) = (𝐴 ·Q (*Q𝐵)))
2319, 6, 22syl2anc 411 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q 𝐴) = (𝐴 ·Q (*Q𝐵)))
24 mulcomnqg 7531 . . . . . . . 8 (((*Q𝐵) ∈ Q ∧ ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)))
2519, 18, 24syl2anc 411 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)))
26 mulassnqg 7532 . . . . . . . . 9 (([⟨𝑥, 1o⟩] ~QQ𝐵Q ∧ (*Q𝐵) ∈ Q) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))))
2715, 16, 19, 26syl3anc 1250 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))))
28 recidnq 7541 . . . . . . . . . 10 (𝐵Q → (𝐵 ·Q (*Q𝐵)) = 1Q)
2928oveq2d 5983 . . . . . . . . 9 (𝐵Q → ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))) = ([⟨𝑥, 1o⟩] ~Q ·Q 1Q))
3016, 29syl 14 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))) = ([⟨𝑥, 1o⟩] ~Q ·Q 1Q))
31 mulidnq 7537 . . . . . . . . 9 ([⟨𝑥, 1o⟩] ~QQ → ([⟨𝑥, 1o⟩] ~Q ·Q 1Q) = [⟨𝑥, 1o⟩] ~Q )
3215, 31syl 14 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q 1Q) = [⟨𝑥, 1o⟩] ~Q )
3327, 30, 323eqtrd 2244 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = [⟨𝑥, 1o⟩] ~Q )
3425, 33eqtrd 2240 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = [⟨𝑥, 1o⟩] ~Q )
3523, 34breq12d 4072 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑥N) → (((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) ↔ (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q ))
3621, 35bitrd 188 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑥N) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q ))
3736biimprd 158 . . 3 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)))
3837reximdva 2610 . 2 ((𝐴Q𝐵Q) → (∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)))
395, 38mpd 13 1 ((𝐴Q𝐵Q) → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wrex 2487  cop 3646   class class class wbr 4059   × cxp 4691  cfv 5290  (class class class)co 5967  1oc1o 6518  [cec 6641   / cqs 6642  Ncnpi 7420   ~Q ceq 7427  Qcnq 7428  1Qc1q 7429   ·Q cmq 7431  *Qcrq 7432   <Q cltq 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501
This theorem is referenced by:  prarloclemarch2  7567
  Copyright terms: Public domain W3C validator