Proof of Theorem prarloclemarch
Step | Hyp | Ref
| Expression |
1 | | recclnq 7354 |
. . . 4
⊢ (𝐵 ∈ Q →
(*Q‘𝐵) ∈ Q) |
2 | | mulclnq 7338 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
(*Q‘𝐵) ∈ Q) → (𝐴
·Q (*Q‘𝐵)) ∈
Q) |
3 | 1, 2 | sylan2 284 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
·Q (*Q‘𝐵)) ∈
Q) |
4 | | archnqq 7379 |
. . 3
⊢ ((𝐴
·Q (*Q‘𝐵)) ∈ Q →
∃𝑥 ∈
N (𝐴
·Q (*Q‘𝐵))
<Q [〈𝑥, 1o〉]
~Q ) |
5 | 3, 4 | syl 14 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ∃𝑥 ∈
N (𝐴
·Q (*Q‘𝐵))
<Q [〈𝑥, 1o〉]
~Q ) |
6 | | simpll 524 |
. . . . . 6
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → 𝐴
∈ Q) |
7 | | 1pi 7277 |
. . . . . . . . . . 11
⊢
1o ∈ N |
8 | | opelxpi 4643 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ N ∧
1o ∈ N) → 〈𝑥, 1o〉 ∈ (N
× N)) |
9 | 7, 8 | mpan2 423 |
. . . . . . . . . 10
⊢ (𝑥 ∈ N →
〈𝑥,
1o〉 ∈ (N ×
N)) |
10 | | enqex 7322 |
. . . . . . . . . . 11
⊢
~Q ∈ V |
11 | 10 | ecelqsi 6567 |
. . . . . . . . . 10
⊢
(〈𝑥,
1o〉 ∈ (N × N) →
[〈𝑥,
1o〉] ~Q ∈ ((N
× N) / ~Q
)) |
12 | 9, 11 | syl 14 |
. . . . . . . . 9
⊢ (𝑥 ∈ N →
[〈𝑥,
1o〉] ~Q ∈ ((N
× N) / ~Q
)) |
13 | | df-nqqs 7310 |
. . . . . . . . 9
⊢
Q = ((N × N) /
~Q ) |
14 | 12, 13 | eleqtrrdi 2264 |
. . . . . . . 8
⊢ (𝑥 ∈ N →
[〈𝑥,
1o〉] ~Q ∈
Q) |
15 | 14 | adantl 275 |
. . . . . . 7
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → [〈𝑥, 1o〉]
~Q ∈ Q) |
16 | | simplr 525 |
. . . . . . 7
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → 𝐵
∈ Q) |
17 | | mulclnq 7338 |
. . . . . . 7
⊢
(([〈𝑥,
1o〉] ~Q ∈ Q ∧
𝐵 ∈ Q)
→ ([〈𝑥,
1o〉] ~Q
·Q 𝐵) ∈ Q) |
18 | 15, 16, 17 | syl2anc 409 |
. . . . . 6
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → ([〈𝑥, 1o〉]
~Q ·Q 𝐵) ∈
Q) |
19 | 16, 1 | syl 14 |
. . . . . 6
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → (*Q‘𝐵) ∈ Q) |
20 | | ltmnqg 7363 |
. . . . . 6
⊢ ((𝐴 ∈ Q ∧
([〈𝑥,
1o〉] ~Q
·Q 𝐵) ∈ Q ∧
(*Q‘𝐵) ∈ Q) → (𝐴 <Q
([〈𝑥,
1o〉] ~Q
·Q 𝐵) ↔
((*Q‘𝐵) ·Q 𝐴) <Q
((*Q‘𝐵) ·Q
([〈𝑥,
1o〉] ~Q
·Q 𝐵)))) |
21 | 6, 18, 19, 20 | syl3anc 1233 |
. . . . 5
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → (𝐴
<Q ([〈𝑥, 1o〉]
~Q ·Q 𝐵) ↔
((*Q‘𝐵) ·Q 𝐴) <Q
((*Q‘𝐵) ·Q
([〈𝑥,
1o〉] ~Q
·Q 𝐵)))) |
22 | | mulcomnqg 7345 |
. . . . . . 7
⊢
(((*Q‘𝐵) ∈ Q ∧ 𝐴 ∈ Q) →
((*Q‘𝐵) ·Q 𝐴) = (𝐴 ·Q
(*Q‘𝐵))) |
23 | 19, 6, 22 | syl2anc 409 |
. . . . . 6
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → ((*Q‘𝐵) ·Q 𝐴) = (𝐴 ·Q
(*Q‘𝐵))) |
24 | | mulcomnqg 7345 |
. . . . . . . 8
⊢
(((*Q‘𝐵) ∈ Q ∧ ([〈𝑥, 1o〉]
~Q ·Q 𝐵) ∈ Q) →
((*Q‘𝐵) ·Q
([〈𝑥,
1o〉] ~Q
·Q 𝐵)) = (([〈𝑥, 1o〉]
~Q ·Q 𝐵)
·Q (*Q‘𝐵))) |
25 | 19, 18, 24 | syl2anc 409 |
. . . . . . 7
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → ((*Q‘𝐵) ·Q
([〈𝑥,
1o〉] ~Q
·Q 𝐵)) = (([〈𝑥, 1o〉]
~Q ·Q 𝐵)
·Q (*Q‘𝐵))) |
26 | | mulassnqg 7346 |
. . . . . . . . 9
⊢
(([〈𝑥,
1o〉] ~Q ∈ Q ∧
𝐵 ∈ Q
∧ (*Q‘𝐵) ∈ Q) →
(([〈𝑥,
1o〉] ~Q
·Q 𝐵) ·Q
(*Q‘𝐵)) = ([〈𝑥, 1o〉]
~Q ·Q (𝐵
·Q (*Q‘𝐵)))) |
27 | 15, 16, 19, 26 | syl3anc 1233 |
. . . . . . . 8
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → (([〈𝑥, 1o〉]
~Q ·Q 𝐵)
·Q (*Q‘𝐵)) = ([〈𝑥, 1o〉]
~Q ·Q (𝐵
·Q (*Q‘𝐵)))) |
28 | | recidnq 7355 |
. . . . . . . . . 10
⊢ (𝐵 ∈ Q →
(𝐵
·Q (*Q‘𝐵)) =
1Q) |
29 | 28 | oveq2d 5869 |
. . . . . . . . 9
⊢ (𝐵 ∈ Q →
([〈𝑥,
1o〉] ~Q
·Q (𝐵 ·Q
(*Q‘𝐵))) = ([〈𝑥, 1o〉]
~Q ·Q
1Q)) |
30 | 16, 29 | syl 14 |
. . . . . . . 8
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → ([〈𝑥, 1o〉]
~Q ·Q (𝐵
·Q (*Q‘𝐵))) = ([〈𝑥, 1o〉]
~Q ·Q
1Q)) |
31 | | mulidnq 7351 |
. . . . . . . . 9
⊢
([〈𝑥,
1o〉] ~Q ∈ Q →
([〈𝑥,
1o〉] ~Q
·Q 1Q) = [〈𝑥, 1o〉]
~Q ) |
32 | 15, 31 | syl 14 |
. . . . . . . 8
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → ([〈𝑥, 1o〉]
~Q ·Q
1Q) = [〈𝑥, 1o〉]
~Q ) |
33 | 27, 30, 32 | 3eqtrd 2207 |
. . . . . . 7
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → (([〈𝑥, 1o〉]
~Q ·Q 𝐵)
·Q (*Q‘𝐵)) = [〈𝑥, 1o〉]
~Q ) |
34 | 25, 33 | eqtrd 2203 |
. . . . . 6
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → ((*Q‘𝐵) ·Q
([〈𝑥,
1o〉] ~Q
·Q 𝐵)) = [〈𝑥, 1o〉]
~Q ) |
35 | 23, 34 | breq12d 4002 |
. . . . 5
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → (((*Q‘𝐵) ·Q 𝐴) <Q
((*Q‘𝐵) ·Q
([〈𝑥,
1o〉] ~Q
·Q 𝐵)) ↔ (𝐴 ·Q
(*Q‘𝐵)) <Q
[〈𝑥,
1o〉] ~Q )) |
36 | 21, 35 | bitrd 187 |
. . . 4
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → (𝐴
<Q ([〈𝑥, 1o〉]
~Q ·Q 𝐵) ↔ (𝐴 ·Q
(*Q‘𝐵)) <Q
[〈𝑥,
1o〉] ~Q )) |
37 | 36 | biimprd 157 |
. . 3
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ Q)
∧ 𝑥 ∈
N) → ((𝐴
·Q (*Q‘𝐵))
<Q [〈𝑥, 1o〉]
~Q → 𝐴 <Q
([〈𝑥,
1o〉] ~Q
·Q 𝐵))) |
38 | 37 | reximdva 2572 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (∃𝑥 ∈
N (𝐴
·Q (*Q‘𝐵))
<Q [〈𝑥, 1o〉]
~Q → ∃𝑥 ∈ N 𝐴 <Q
([〈𝑥,
1o〉] ~Q
·Q 𝐵))) |
39 | 5, 38 | mpd 13 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ ∃𝑥 ∈
N 𝐴
<Q ([〈𝑥, 1o〉]
~Q ·Q 𝐵)) |