ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch GIF version

Theorem prarloclemarch 7480
Description: A version of the Archimedean property. This variation is "stronger" than archnqq 7479 in the sense that we provide an integer which is larger than a given rational 𝐴 even after being multiplied by a second rational 𝐵. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
prarloclemarch ((𝐴Q𝐵Q) → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem prarloclemarch
StepHypRef Expression
1 recclnq 7454 . . . 4 (𝐵Q → (*Q𝐵) ∈ Q)
2 mulclnq 7438 . . . 4 ((𝐴Q ∧ (*Q𝐵) ∈ Q) → (𝐴 ·Q (*Q𝐵)) ∈ Q)
31, 2sylan2 286 . . 3 ((𝐴Q𝐵Q) → (𝐴 ·Q (*Q𝐵)) ∈ Q)
4 archnqq 7479 . . 3 ((𝐴 ·Q (*Q𝐵)) ∈ Q → ∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q )
53, 4syl 14 . 2 ((𝐴Q𝐵Q) → ∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q )
6 simpll 527 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → 𝐴Q)
7 1pi 7377 . . . . . . . . . . 11 1oN
8 opelxpi 4692 . . . . . . . . . . 11 ((𝑥N ∧ 1oN) → ⟨𝑥, 1o⟩ ∈ (N × N))
97, 8mpan2 425 . . . . . . . . . 10 (𝑥N → ⟨𝑥, 1o⟩ ∈ (N × N))
10 enqex 7422 . . . . . . . . . . 11 ~Q ∈ V
1110ecelqsi 6645 . . . . . . . . . 10 (⟨𝑥, 1o⟩ ∈ (N × N) → [⟨𝑥, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
129, 11syl 14 . . . . . . . . 9 (𝑥N → [⟨𝑥, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
13 df-nqqs 7410 . . . . . . . . 9 Q = ((N × N) / ~Q )
1412, 13eleqtrrdi 2287 . . . . . . . 8 (𝑥N → [⟨𝑥, 1o⟩] ~QQ)
1514adantl 277 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → [⟨𝑥, 1o⟩] ~QQ)
16 simplr 528 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → 𝐵Q)
17 mulclnq 7438 . . . . . . 7 (([⟨𝑥, 1o⟩] ~QQ𝐵Q) → ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q)
1815, 16, 17syl2anc 411 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q)
1916, 1syl 14 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → (*Q𝐵) ∈ Q)
20 ltmnqg 7463 . . . . . 6 ((𝐴Q ∧ ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q ∧ (*Q𝐵) ∈ Q) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ ((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))))
216, 18, 19, 20syl3anc 1249 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑥N) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ ((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))))
22 mulcomnqg 7445 . . . . . . 7 (((*Q𝐵) ∈ Q𝐴Q) → ((*Q𝐵) ·Q 𝐴) = (𝐴 ·Q (*Q𝐵)))
2319, 6, 22syl2anc 411 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q 𝐴) = (𝐴 ·Q (*Q𝐵)))
24 mulcomnqg 7445 . . . . . . . 8 (((*Q𝐵) ∈ Q ∧ ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)))
2519, 18, 24syl2anc 411 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)))
26 mulassnqg 7446 . . . . . . . . 9 (([⟨𝑥, 1o⟩] ~QQ𝐵Q ∧ (*Q𝐵) ∈ Q) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))))
2715, 16, 19, 26syl3anc 1249 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))))
28 recidnq 7455 . . . . . . . . . 10 (𝐵Q → (𝐵 ·Q (*Q𝐵)) = 1Q)
2928oveq2d 5935 . . . . . . . . 9 (𝐵Q → ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))) = ([⟨𝑥, 1o⟩] ~Q ·Q 1Q))
3016, 29syl 14 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))) = ([⟨𝑥, 1o⟩] ~Q ·Q 1Q))
31 mulidnq 7451 . . . . . . . . 9 ([⟨𝑥, 1o⟩] ~QQ → ([⟨𝑥, 1o⟩] ~Q ·Q 1Q) = [⟨𝑥, 1o⟩] ~Q )
3215, 31syl 14 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q 1Q) = [⟨𝑥, 1o⟩] ~Q )
3327, 30, 323eqtrd 2230 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = [⟨𝑥, 1o⟩] ~Q )
3425, 33eqtrd 2226 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = [⟨𝑥, 1o⟩] ~Q )
3523, 34breq12d 4043 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑥N) → (((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) ↔ (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q ))
3621, 35bitrd 188 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑥N) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q ))
3736biimprd 158 . . 3 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)))
3837reximdva 2596 . 2 ((𝐴Q𝐵Q) → (∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)))
395, 38mpd 13 1 ((𝐴Q𝐵Q) → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wrex 2473  cop 3622   class class class wbr 4030   × cxp 4658  cfv 5255  (class class class)co 5919  1oc1o 6464  [cec 6587   / cqs 6588  Ncnpi 7334   ~Q ceq 7341  Qcnq 7342  1Qc1q 7343   ·Q cmq 7345  *Qcrq 7346   <Q cltq 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415
This theorem is referenced by:  prarloclemarch2  7481
  Copyright terms: Public domain W3C validator