ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch GIF version

Theorem prarloclemarch 7250
Description: A version of the Archimedean property. This variation is "stronger" than archnqq 7249 in the sense that we provide an integer which is larger than a given rational 𝐴 even after being multiplied by a second rational 𝐵. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
prarloclemarch ((𝐴Q𝐵Q) → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem prarloclemarch
StepHypRef Expression
1 recclnq 7224 . . . 4 (𝐵Q → (*Q𝐵) ∈ Q)
2 mulclnq 7208 . . . 4 ((𝐴Q ∧ (*Q𝐵) ∈ Q) → (𝐴 ·Q (*Q𝐵)) ∈ Q)
31, 2sylan2 284 . . 3 ((𝐴Q𝐵Q) → (𝐴 ·Q (*Q𝐵)) ∈ Q)
4 archnqq 7249 . . 3 ((𝐴 ·Q (*Q𝐵)) ∈ Q → ∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q )
53, 4syl 14 . 2 ((𝐴Q𝐵Q) → ∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q )
6 simpll 519 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → 𝐴Q)
7 1pi 7147 . . . . . . . . . . 11 1oN
8 opelxpi 4579 . . . . . . . . . . 11 ((𝑥N ∧ 1oN) → ⟨𝑥, 1o⟩ ∈ (N × N))
97, 8mpan2 422 . . . . . . . . . 10 (𝑥N → ⟨𝑥, 1o⟩ ∈ (N × N))
10 enqex 7192 . . . . . . . . . . 11 ~Q ∈ V
1110ecelqsi 6491 . . . . . . . . . 10 (⟨𝑥, 1o⟩ ∈ (N × N) → [⟨𝑥, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
129, 11syl 14 . . . . . . . . 9 (𝑥N → [⟨𝑥, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
13 df-nqqs 7180 . . . . . . . . 9 Q = ((N × N) / ~Q )
1412, 13eleqtrrdi 2234 . . . . . . . 8 (𝑥N → [⟨𝑥, 1o⟩] ~QQ)
1514adantl 275 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → [⟨𝑥, 1o⟩] ~QQ)
16 simplr 520 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → 𝐵Q)
17 mulclnq 7208 . . . . . . 7 (([⟨𝑥, 1o⟩] ~QQ𝐵Q) → ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q)
1815, 16, 17syl2anc 409 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q)
1916, 1syl 14 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → (*Q𝐵) ∈ Q)
20 ltmnqg 7233 . . . . . 6 ((𝐴Q ∧ ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q ∧ (*Q𝐵) ∈ Q) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ ((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))))
216, 18, 19, 20syl3anc 1217 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑥N) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ ((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))))
22 mulcomnqg 7215 . . . . . . 7 (((*Q𝐵) ∈ Q𝐴Q) → ((*Q𝐵) ·Q 𝐴) = (𝐴 ·Q (*Q𝐵)))
2319, 6, 22syl2anc 409 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q 𝐴) = (𝐴 ·Q (*Q𝐵)))
24 mulcomnqg 7215 . . . . . . . 8 (((*Q𝐵) ∈ Q ∧ ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)))
2519, 18, 24syl2anc 409 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)))
26 mulassnqg 7216 . . . . . . . . 9 (([⟨𝑥, 1o⟩] ~QQ𝐵Q ∧ (*Q𝐵) ∈ Q) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))))
2715, 16, 19, 26syl3anc 1217 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))))
28 recidnq 7225 . . . . . . . . . 10 (𝐵Q → (𝐵 ·Q (*Q𝐵)) = 1Q)
2928oveq2d 5798 . . . . . . . . 9 (𝐵Q → ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))) = ([⟨𝑥, 1o⟩] ~Q ·Q 1Q))
3016, 29syl 14 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))) = ([⟨𝑥, 1o⟩] ~Q ·Q 1Q))
31 mulidnq 7221 . . . . . . . . 9 ([⟨𝑥, 1o⟩] ~QQ → ([⟨𝑥, 1o⟩] ~Q ·Q 1Q) = [⟨𝑥, 1o⟩] ~Q )
3215, 31syl 14 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q 1Q) = [⟨𝑥, 1o⟩] ~Q )
3327, 30, 323eqtrd 2177 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = [⟨𝑥, 1o⟩] ~Q )
3425, 33eqtrd 2173 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = [⟨𝑥, 1o⟩] ~Q )
3523, 34breq12d 3950 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑥N) → (((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) ↔ (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q ))
3621, 35bitrd 187 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑥N) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q ))
3736biimprd 157 . . 3 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)))
3837reximdva 2537 . 2 ((𝐴Q𝐵Q) → (∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)))
395, 38mpd 13 1 ((𝐴Q𝐵Q) → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wrex 2418  cop 3535   class class class wbr 3937   × cxp 4545  cfv 5131  (class class class)co 5782  1oc1o 6314  [cec 6435   / cqs 6436  Ncnpi 7104   ~Q ceq 7111  Qcnq 7112  1Qc1q 7113   ·Q cmq 7115  *Qcrq 7116   <Q cltq 7117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185
This theorem is referenced by:  prarloclemarch2  7251
  Copyright terms: Public domain W3C validator