ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch GIF version

Theorem prarloclemarch 7434
Description: A version of the Archimedean property. This variation is "stronger" than archnqq 7433 in the sense that we provide an integer which is larger than a given rational 𝐴 even after being multiplied by a second rational 𝐵. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
prarloclemarch ((𝐴Q𝐵Q) → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem prarloclemarch
StepHypRef Expression
1 recclnq 7408 . . . 4 (𝐵Q → (*Q𝐵) ∈ Q)
2 mulclnq 7392 . . . 4 ((𝐴Q ∧ (*Q𝐵) ∈ Q) → (𝐴 ·Q (*Q𝐵)) ∈ Q)
31, 2sylan2 286 . . 3 ((𝐴Q𝐵Q) → (𝐴 ·Q (*Q𝐵)) ∈ Q)
4 archnqq 7433 . . 3 ((𝐴 ·Q (*Q𝐵)) ∈ Q → ∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q )
53, 4syl 14 . 2 ((𝐴Q𝐵Q) → ∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q )
6 simpll 527 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → 𝐴Q)
7 1pi 7331 . . . . . . . . . . 11 1oN
8 opelxpi 4672 . . . . . . . . . . 11 ((𝑥N ∧ 1oN) → ⟨𝑥, 1o⟩ ∈ (N × N))
97, 8mpan2 425 . . . . . . . . . 10 (𝑥N → ⟨𝑥, 1o⟩ ∈ (N × N))
10 enqex 7376 . . . . . . . . . . 11 ~Q ∈ V
1110ecelqsi 6606 . . . . . . . . . 10 (⟨𝑥, 1o⟩ ∈ (N × N) → [⟨𝑥, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
129, 11syl 14 . . . . . . . . 9 (𝑥N → [⟨𝑥, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
13 df-nqqs 7364 . . . . . . . . 9 Q = ((N × N) / ~Q )
1412, 13eleqtrrdi 2282 . . . . . . . 8 (𝑥N → [⟨𝑥, 1o⟩] ~QQ)
1514adantl 277 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → [⟨𝑥, 1o⟩] ~QQ)
16 simplr 528 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → 𝐵Q)
17 mulclnq 7392 . . . . . . 7 (([⟨𝑥, 1o⟩] ~QQ𝐵Q) → ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q)
1815, 16, 17syl2anc 411 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q)
1916, 1syl 14 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → (*Q𝐵) ∈ Q)
20 ltmnqg 7417 . . . . . 6 ((𝐴Q ∧ ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q ∧ (*Q𝐵) ∈ Q) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ ((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))))
216, 18, 19, 20syl3anc 1248 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑥N) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ ((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))))
22 mulcomnqg 7399 . . . . . . 7 (((*Q𝐵) ∈ Q𝐴Q) → ((*Q𝐵) ·Q 𝐴) = (𝐴 ·Q (*Q𝐵)))
2319, 6, 22syl2anc 411 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q 𝐴) = (𝐴 ·Q (*Q𝐵)))
24 mulcomnqg 7399 . . . . . . . 8 (((*Q𝐵) ∈ Q ∧ ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ∈ Q) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)))
2519, 18, 24syl2anc 411 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)))
26 mulassnqg 7400 . . . . . . . . 9 (([⟨𝑥, 1o⟩] ~QQ𝐵Q ∧ (*Q𝐵) ∈ Q) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))))
2715, 16, 19, 26syl3anc 1248 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))))
28 recidnq 7409 . . . . . . . . . 10 (𝐵Q → (𝐵 ·Q (*Q𝐵)) = 1Q)
2928oveq2d 5906 . . . . . . . . 9 (𝐵Q → ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))) = ([⟨𝑥, 1o⟩] ~Q ·Q 1Q))
3016, 29syl 14 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q (𝐵 ·Q (*Q𝐵))) = ([⟨𝑥, 1o⟩] ~Q ·Q 1Q))
31 mulidnq 7405 . . . . . . . . 9 ([⟨𝑥, 1o⟩] ~QQ → ([⟨𝑥, 1o⟩] ~Q ·Q 1Q) = [⟨𝑥, 1o⟩] ~Q )
3215, 31syl 14 . . . . . . . 8 (((𝐴Q𝐵Q) ∧ 𝑥N) → ([⟨𝑥, 1o⟩] ~Q ·Q 1Q) = [⟨𝑥, 1o⟩] ~Q )
3327, 30, 323eqtrd 2225 . . . . . . 7 (((𝐴Q𝐵Q) ∧ 𝑥N) → (([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ·Q (*Q𝐵)) = [⟨𝑥, 1o⟩] ~Q )
3425, 33eqtrd 2221 . . . . . 6 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) = [⟨𝑥, 1o⟩] ~Q )
3523, 34breq12d 4030 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑥N) → (((*Q𝐵) ·Q 𝐴) <Q ((*Q𝐵) ·Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)) ↔ (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q ))
3621, 35bitrd 188 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑥N) → (𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵) ↔ (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q ))
3736biimprd 158 . . 3 (((𝐴Q𝐵Q) ∧ 𝑥N) → ((𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)))
3837reximdva 2591 . 2 ((𝐴Q𝐵Q) → (∃𝑥N (𝐴 ·Q (*Q𝐵)) <Q [⟨𝑥, 1o⟩] ~Q → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵)))
395, 38mpd 13 1 ((𝐴Q𝐵Q) → ∃𝑥N 𝐴 <Q ([⟨𝑥, 1o⟩] ~Q ·Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  wcel 2159  wrex 2468  cop 3609   class class class wbr 4017   × cxp 4638  cfv 5230  (class class class)co 5890  1oc1o 6427  [cec 6550   / cqs 6551  Ncnpi 7288   ~Q ceq 7295  Qcnq 7296  1Qc1q 7297   ·Q cmq 7299  *Qcrq 7300   <Q cltq 7301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-eprel 4303  df-id 4307  df-iord 4380  df-on 4382  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-irdg 6388  df-1o 6434  df-oadd 6438  df-omul 6439  df-er 6552  df-ec 6554  df-qs 6558  df-ni 7320  df-pli 7321  df-mi 7322  df-lti 7323  df-mpq 7361  df-enq 7363  df-nqqs 7364  df-mqqs 7366  df-1nqqs 7367  df-rq 7368  df-ltnqqs 7369
This theorem is referenced by:  prarloclemarch2  7435
  Copyright terms: Public domain W3C validator