ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3feq GIF version

Theorem seq3feq 10276
Description: Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
Hypotheses
Ref Expression
seq3feq.1 (𝜑𝑀 ∈ ℤ)
seq3feq.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3feq.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐺𝑘))
seq3feq.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3feq (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))
Distinct variable groups:   + ,𝑘,𝑥,𝑦   𝑘,𝐹,𝑥,𝑦   𝑘,𝐺,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦

Proof of Theorem seq3feq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2140 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 seq3feq.1 . . . 4 (𝜑𝑀 ∈ ℤ)
3 seq3feq.f . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4 seq3feq.pl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
51, 2, 3, 4seqf 10265 . . 3 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
65ffnd 5281 . 2 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
7 fveq2 5429 . . . . . . 7 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
8 fveq2 5429 . . . . . . 7 (𝑘 = 𝑥 → (𝐺𝑘) = (𝐺𝑥))
97, 8eqeq12d 2155 . . . . . 6 (𝑘 = 𝑥 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑥) = (𝐺𝑥)))
10 seq3feq.2 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐺𝑘))
1110ralrimiva 2508 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = (𝐺𝑘))
1211adantr 274 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = (𝐺𝑘))
13 simpr 109 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
149, 12, 13rspcdva 2798 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) = (𝐺𝑥))
1514, 3eqeltrrd 2218 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
161, 2, 15, 4seqf 10265 . . 3 (𝜑 → seq𝑀( + , 𝐺):(ℤ𝑀)⟶𝑆)
1716ffnd 5281 . 2 (𝜑 → seq𝑀( + , 𝐺) Fn (ℤ𝑀))
18 simpr 109 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
19 simpll 519 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → 𝜑)
20 elfzuz 9833 . . . . 5 (𝑘 ∈ (𝑀...𝑧) → 𝑘 ∈ (ℤ𝑀))
2120adantl 275 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → 𝑘 ∈ (ℤ𝑀))
2219, 21, 10syl2anc 409 . . 3 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
233adantlr 469 . . 3 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
2415adantlr 469 . . 3 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
254adantlr 469 . . 3 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2618, 22, 23, 24, 25seq3fveq 10275 . 2 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑧))
276, 17, 26eqfnfvd 5529 1 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wral 2417  cfv 5131  (class class class)co 5782  cz 9078  cuz 9350  ...cfz 9821  seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-seqfrec 10250
This theorem is referenced by:  zsumdc  11185  fsum3cvg2  11195  isumshft  11291  geolim2  11313  cvgratz  11333  mertenslem2  11337  zproddc  11380
  Copyright terms: Public domain W3C validator