| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3feq | GIF version | ||
| Description: Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
| Ref | Expression |
|---|---|
| seq3feq.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| seq3feq.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| seq3feq.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| seq3feq.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| seq3feq | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . . 4 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 2 | seq3feq.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | seq3feq.f | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
| 4 | seq3feq.pl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 5 | 1, 2, 3, 4 | seqf 10681 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
| 6 | 5 | ffnd 5473 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
| 7 | fveq2 5626 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) | |
| 8 | fveq2 5626 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → (𝐺‘𝑘) = (𝐺‘𝑥)) | |
| 9 | 7, 8 | eqeq12d 2244 | . . . . . 6 ⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 10 | seq3feq.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
| 11 | 10 | ralrimiva 2603 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = (𝐺‘𝑘)) |
| 12 | 11 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = (𝐺‘𝑘)) |
| 13 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
| 14 | 9, 12, 13 | rspcdva 2912 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 15 | 14, 3 | eqeltrrd 2307 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 16 | 1, 2, 15, 4 | seqf 10681 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺):(ℤ≥‘𝑀)⟶𝑆) |
| 17 | 16 | ffnd 5473 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) Fn (ℤ≥‘𝑀)) |
| 18 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → 𝑧 ∈ (ℤ≥‘𝑀)) | |
| 19 | simpll 527 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → 𝜑) | |
| 20 | elfzuz 10213 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑧) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 21 | 20 | adantl 277 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 22 | 19, 21, 10 | syl2anc 411 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| 23 | 3 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 24 | 15 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 25 | 4 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 26 | 18, 22, 23, 24, 25 | seq3fveq 10696 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑧)) |
| 27 | 6, 17, 26 | eqfnfvd 5734 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ‘cfv 5317 (class class class)co 6000 ℤcz 9442 ℤ≥cuz 9718 ...cfz 10200 seqcseq 10664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-seqfrec 10665 |
| This theorem is referenced by: zsumdc 11890 fsum3cvg2 11900 isumshft 11996 geolim2 12018 cvgratz 12038 mertenslem2 12042 zproddc 12085 |
| Copyright terms: Public domain | W3C validator |