| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3feq | GIF version | ||
| Description: Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
| Ref | Expression |
|---|---|
| seq3feq.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| seq3feq.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| seq3feq.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| seq3feq.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| seq3feq | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . . 4 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 2 | seq3feq.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | seq3feq.f | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
| 4 | seq3feq.pl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 5 | 1, 2, 3, 4 | seqf 10590 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
| 6 | 5 | ffnd 5420 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
| 7 | fveq2 5570 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) | |
| 8 | fveq2 5570 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → (𝐺‘𝑘) = (𝐺‘𝑥)) | |
| 9 | 7, 8 | eqeq12d 2219 | . . . . . 6 ⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 10 | seq3feq.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
| 11 | 10 | ralrimiva 2578 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = (𝐺‘𝑘)) |
| 12 | 11 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = (𝐺‘𝑘)) |
| 13 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
| 14 | 9, 12, 13 | rspcdva 2881 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 15 | 14, 3 | eqeltrrd 2282 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 16 | 1, 2, 15, 4 | seqf 10590 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺):(ℤ≥‘𝑀)⟶𝑆) |
| 17 | 16 | ffnd 5420 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) Fn (ℤ≥‘𝑀)) |
| 18 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → 𝑧 ∈ (ℤ≥‘𝑀)) | |
| 19 | simpll 527 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → 𝜑) | |
| 20 | elfzuz 10125 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑧) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 21 | 20 | adantl 277 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 22 | 19, 21, 10 | syl2anc 411 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| 23 | 3 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 24 | 15 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 25 | 4 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 26 | 18, 22, 23, 24, 25 | seq3fveq 10605 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑧)) |
| 27 | 6, 17, 26 | eqfnfvd 5674 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ‘cfv 5268 (class class class)co 5934 ℤcz 9354 ℤ≥cuz 9630 ...cfz 10112 seqcseq 10573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-fz 10113 df-seqfrec 10574 |
| This theorem is referenced by: zsumdc 11614 fsum3cvg2 11624 isumshft 11720 geolim2 11742 cvgratz 11762 mertenslem2 11766 zproddc 11809 |
| Copyright terms: Public domain | W3C validator |