![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seq3feq | GIF version |
Description: Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.) |
Ref | Expression |
---|---|
seq3feq.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
seq3feq.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
seq3feq.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
seq3feq.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
seq3feq | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . . 4 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | seq3feq.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | seq3feq.f | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
4 | seq3feq.pl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
5 | 1, 2, 3, 4 | seqf 10463 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
6 | 5 | ffnd 5368 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
7 | fveq2 5517 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) | |
8 | fveq2 5517 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → (𝐺‘𝑘) = (𝐺‘𝑥)) | |
9 | 7, 8 | eqeq12d 2192 | . . . . . 6 ⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
10 | seq3feq.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
11 | 10 | ralrimiva 2550 | . . . . . . 7 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = (𝐺‘𝑘)) |
12 | 11 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = (𝐺‘𝑘)) |
13 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) | |
14 | 9, 12, 13 | rspcdva 2848 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
15 | 14, 3 | eqeltrrd 2255 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
16 | 1, 2, 15, 4 | seqf 10463 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺):(ℤ≥‘𝑀)⟶𝑆) |
17 | 16 | ffnd 5368 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) Fn (ℤ≥‘𝑀)) |
18 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → 𝑧 ∈ (ℤ≥‘𝑀)) | |
19 | simpll 527 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → 𝜑) | |
20 | elfzuz 10023 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑧) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
21 | 20 | adantl 277 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
22 | 19, 21, 10 | syl2anc 411 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑧)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
23 | 3 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
24 | 15 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
25 | 4 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
26 | 18, 22, 23, 24, 25 | seq3fveq 10473 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑧)) |
27 | 6, 17, 26 | eqfnfvd 5618 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ‘cfv 5218 (class class class)co 5877 ℤcz 9255 ℤ≥cuz 9530 ...cfz 10010 seqcseq 10447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-seqfrec 10448 |
This theorem is referenced by: zsumdc 11394 fsum3cvg2 11404 isumshft 11500 geolim2 11522 cvgratz 11542 mertenslem2 11546 zproddc 11589 |
Copyright terms: Public domain | W3C validator |