ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3feq2 GIF version

Theorem seq3feq2 10585
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
seq3fveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seq3fveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seq3fveq2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3fveq2.g ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
seq3fveq2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3feq2.4 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seq3feq2 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦

Proof of Theorem seq3feq2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 seq3fveq2.1 . . . . . 6 (𝜑𝐾 ∈ (ℤ𝑀))
3 eluzel2 9623 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
42, 3syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
5 seq3fveq2.f . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6 seq3fveq2.pl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
71, 4, 5, 6seqf 10573 . . . 4 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
87ffnd 5411 . . 3 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
9 uzss 9639 . . . 4 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
102, 9syl 14 . . 3 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
11 fnssres 5374 . . 3 ((seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ (ℤ𝐾) ⊆ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
128, 10, 11syl2anc 411 . 2 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
13 eqid 2196 . . . 4 (ℤ𝐾) = (ℤ𝐾)
14 eluzelz 9627 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
152, 14syl 14 . . . 4 (𝜑𝐾 ∈ ℤ)
16 seq3fveq2.g . . . 4 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
1713, 15, 16, 6seqf 10573 . . 3 (𝜑 → seq𝐾( + , 𝐺):(ℤ𝐾)⟶𝑆)
1817ffnd 5411 . 2 (𝜑 → seq𝐾( + , 𝐺) Fn (ℤ𝐾))
19 fvres 5585 . . . 4 (𝑧 ∈ (ℤ𝐾) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧))
2019adantl 277 . . 3 ((𝜑𝑧 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧))
212adantr 276 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
22 seq3fveq2.2 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
2322adantr 276 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
245adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
2516adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
266adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
27 simpr 110 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝑧 ∈ (ℤ𝐾))
28 elfzuz 10113 . . . . . 6 (𝑘 ∈ ((𝐾 + 1)...𝑧) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
29 seq3feq2.4 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
3028, 29sylan2 286 . . . . 5 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
3130adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
3221, 23, 24, 25, 26, 27, 31seq3fveq2 10584 . . 3 ((𝜑𝑧 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))
3320, 32eqtrd 2229 . 2 ((𝜑𝑧 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))
3412, 18, 33eqfnfvd 5665 1 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wss 3157  cres 4666   Fn wfn 5254  cfv 5259  (class class class)co 5925  1c1 7897   + caddc 7899  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557
This theorem is referenced by:  seq3id  10634
  Copyright terms: Public domain W3C validator