ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3feq2 GIF version

Theorem seq3feq2 10602
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
seq3fveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seq3fveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seq3fveq2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3fveq2.g ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
seq3fveq2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3feq2.4 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seq3feq2 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦

Proof of Theorem seq3feq2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 seq3fveq2.1 . . . . . 6 (𝜑𝐾 ∈ (ℤ𝑀))
3 eluzel2 9635 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
42, 3syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
5 seq3fveq2.f . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6 seq3fveq2.pl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
71, 4, 5, 6seqf 10590 . . . 4 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
87ffnd 5420 . . 3 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
9 uzss 9651 . . . 4 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
102, 9syl 14 . . 3 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
11 fnssres 5383 . . 3 ((seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ (ℤ𝐾) ⊆ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
128, 10, 11syl2anc 411 . 2 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
13 eqid 2204 . . . 4 (ℤ𝐾) = (ℤ𝐾)
14 eluzelz 9639 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
152, 14syl 14 . . . 4 (𝜑𝐾 ∈ ℤ)
16 seq3fveq2.g . . . 4 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
1713, 15, 16, 6seqf 10590 . . 3 (𝜑 → seq𝐾( + , 𝐺):(ℤ𝐾)⟶𝑆)
1817ffnd 5420 . 2 (𝜑 → seq𝐾( + , 𝐺) Fn (ℤ𝐾))
19 fvres 5594 . . . 4 (𝑧 ∈ (ℤ𝐾) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧))
2019adantl 277 . . 3 ((𝜑𝑧 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧))
212adantr 276 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
22 seq3fveq2.2 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
2322adantr 276 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
245adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
2516adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
266adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
27 simpr 110 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝑧 ∈ (ℤ𝐾))
28 elfzuz 10125 . . . . . 6 (𝑘 ∈ ((𝐾 + 1)...𝑧) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
29 seq3feq2.4 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
3028, 29sylan2 286 . . . . 5 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
3130adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
3221, 23, 24, 25, 26, 27, 31seq3fveq2 10601 . . 3 ((𝜑𝑧 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))
3320, 32eqtrd 2237 . 2 ((𝜑𝑧 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))
3412, 18, 33eqfnfvd 5674 1 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wss 3165  cres 4675   Fn wfn 5263  cfv 5268  (class class class)co 5934  1c1 7908   + caddc 7910  cz 9354  cuz 9630  ...cfz 10112  seqcseq 10573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113  df-seqfrec 10574
This theorem is referenced by:  seq3id  10651
  Copyright terms: Public domain W3C validator