ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3feq2 GIF version

Theorem seq3feq2 10550
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
seq3fveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seq3fveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seq3fveq2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3fveq2.g ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
seq3fveq2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3feq2.4 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seq3feq2 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦

Proof of Theorem seq3feq2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 seq3fveq2.1 . . . . . 6 (𝜑𝐾 ∈ (ℤ𝑀))
3 eluzel2 9600 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
42, 3syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
5 seq3fveq2.f . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6 seq3fveq2.pl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
71, 4, 5, 6seqf 10538 . . . 4 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
87ffnd 5405 . . 3 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
9 uzss 9616 . . . 4 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
102, 9syl 14 . . 3 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
11 fnssres 5368 . . 3 ((seq𝑀( + , 𝐹) Fn (ℤ𝑀) ∧ (ℤ𝐾) ⊆ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
128, 10, 11syl2anc 411 . 2 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
13 eqid 2193 . . . 4 (ℤ𝐾) = (ℤ𝐾)
14 eluzelz 9604 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
152, 14syl 14 . . . 4 (𝜑𝐾 ∈ ℤ)
16 seq3fveq2.g . . . 4 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
1713, 15, 16, 6seqf 10538 . . 3 (𝜑 → seq𝐾( + , 𝐺):(ℤ𝐾)⟶𝑆)
1817ffnd 5405 . 2 (𝜑 → seq𝐾( + , 𝐺) Fn (ℤ𝐾))
19 fvres 5579 . . . 4 (𝑧 ∈ (ℤ𝐾) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧))
2019adantl 277 . . 3 ((𝜑𝑧 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧))
212adantr 276 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
22 seq3fveq2.2 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
2322adantr 276 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
245adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
2516adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
266adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
27 simpr 110 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝑧 ∈ (ℤ𝐾))
28 elfzuz 10090 . . . . . 6 (𝑘 ∈ ((𝐾 + 1)...𝑧) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
29 seq3feq2.4 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
3028, 29sylan2 286 . . . . 5 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
3130adantlr 477 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
3221, 23, 24, 25, 26, 27, 31seq3fveq2 10549 . . 3 ((𝜑𝑧 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))
3320, 32eqtrd 2226 . 2 ((𝜑𝑧 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝐾))‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))
3412, 18, 33eqfnfvd 5659 1 (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wss 3154  cres 4662   Fn wfn 5250  cfv 5255  (class class class)co 5919  1c1 7875   + caddc 7877  cz 9320  cuz 9595  ...cfz 10077  seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-seqfrec 10522
This theorem is referenced by:  seq3id  10599
  Copyright terms: Public domain W3C validator