Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3feq2 | GIF version |
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.) |
Ref | Expression |
---|---|
seq3fveq2.1 | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
seq3fveq2.2 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) |
seq3fveq2.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
seq3fveq2.g | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) |
seq3fveq2.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seq3feq2.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
seq3feq2 | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | seq3fveq2.1 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) | |
3 | eluzel2 9444 | . . . . . 6 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | seq3fveq2.f | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
6 | seq3fveq2.pl | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
7 | 1, 4, 5, 6 | seqf 10360 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
8 | 7 | ffnd 5320 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
9 | uzss 9459 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) | |
10 | 2, 9 | syl 14 | . . 3 ⊢ (𝜑 → (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) |
11 | fnssres 5283 | . . 3 ⊢ ((seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀) ∧ (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) Fn (ℤ≥‘𝐾)) | |
12 | 8, 10, 11 | syl2anc 409 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) Fn (ℤ≥‘𝐾)) |
13 | eqid 2157 | . . . 4 ⊢ (ℤ≥‘𝐾) = (ℤ≥‘𝐾) | |
14 | eluzelz 9448 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
15 | 2, 14 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
16 | seq3fveq2.g | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) | |
17 | 13, 15, 16, 6 | seqf 10360 | . . 3 ⊢ (𝜑 → seq𝐾( + , 𝐺):(ℤ≥‘𝐾)⟶𝑆) |
18 | 17 | ffnd 5320 | . 2 ⊢ (𝜑 → seq𝐾( + , 𝐺) Fn (ℤ≥‘𝐾)) |
19 | fvres 5492 | . . . 4 ⊢ (𝑧 ∈ (ℤ≥‘𝐾) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧)) | |
20 | 19 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧)) |
21 | 2 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
22 | seq3fveq2.2 | . . . . 5 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) | |
23 | 22 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) |
24 | 5 | adantlr 469 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
25 | 16 | adantlr 469 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) |
26 | 6 | adantlr 469 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
27 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → 𝑧 ∈ (ℤ≥‘𝐾)) | |
28 | elfzuz 9924 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐾 + 1)...𝑧) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) | |
29 | seq3feq2.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
30 | 28, 29 | sylan2 284 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
31 | 30 | adantlr 469 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
32 | 21, 23, 24, 25, 26, 27, 31 | seq3fveq2 10368 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) |
33 | 20, 32 | eqtrd 2190 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) |
34 | 12, 18, 33 | eqfnfvd 5568 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ⊆ wss 3102 ↾ cres 4588 Fn wfn 5165 ‘cfv 5170 (class class class)co 5824 1c1 7733 + caddc 7735 ℤcz 9167 ℤ≥cuz 9439 ...cfz 9912 seqcseq 10344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-addass 7834 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-0id 7840 ax-rnegex 7841 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-ltadd 7848 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-frec 6338 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-inn 8834 df-n0 9091 df-z 9168 df-uz 9440 df-fz 9913 df-seqfrec 10345 |
This theorem is referenced by: seq3id 10407 |
Copyright terms: Public domain | W3C validator |