![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seq3feq2 | GIF version |
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.) |
Ref | Expression |
---|---|
seq3fveq2.1 | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
seq3fveq2.2 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) |
seq3fveq2.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
seq3fveq2.g | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) |
seq3fveq2.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seq3feq2.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
seq3feq2 | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | seq3fveq2.1 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) | |
3 | eluzel2 9597 | . . . . . 6 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | seq3fveq2.f | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
6 | seq3fveq2.pl | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
7 | 1, 4, 5, 6 | seqf 10535 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
8 | 7 | ffnd 5404 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
9 | uzss 9613 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) | |
10 | 2, 9 | syl 14 | . . 3 ⊢ (𝜑 → (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) |
11 | fnssres 5367 | . . 3 ⊢ ((seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀) ∧ (ℤ≥‘𝐾) ⊆ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) Fn (ℤ≥‘𝐾)) | |
12 | 8, 10, 11 | syl2anc 411 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) Fn (ℤ≥‘𝐾)) |
13 | eqid 2193 | . . . 4 ⊢ (ℤ≥‘𝐾) = (ℤ≥‘𝐾) | |
14 | eluzelz 9601 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
15 | 2, 14 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
16 | seq3fveq2.g | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) | |
17 | 13, 15, 16, 6 | seqf 10535 | . . 3 ⊢ (𝜑 → seq𝐾( + , 𝐺):(ℤ≥‘𝐾)⟶𝑆) |
18 | 17 | ffnd 5404 | . 2 ⊢ (𝜑 → seq𝐾( + , 𝐺) Fn (ℤ≥‘𝐾)) |
19 | fvres 5578 | . . . 4 ⊢ (𝑧 ∈ (ℤ≥‘𝐾) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧)) | |
20 | 19 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑧) = (seq𝑀( + , 𝐹)‘𝑧)) |
21 | 2 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
22 | seq3fveq2.2 | . . . . 5 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) | |
23 | 22 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) |
24 | 5 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
25 | 16 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) |
26 | 6 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
27 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → 𝑧 ∈ (ℤ≥‘𝐾)) | |
28 | elfzuz 10087 | . . . . . 6 ⊢ (𝑘 ∈ ((𝐾 + 1)...𝑧) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) | |
29 | seq3feq2.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
30 | 28, 29 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
31 | 30 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
32 | 21, 23, 24, 25, 26, 27, 31 | seq3fveq2 10546 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) |
33 | 20, 32 | eqtrd 2226 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾))‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) |
34 | 12, 18, 33 | eqfnfvd 5658 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝐾)) = seq𝐾( + , 𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 ↾ cres 4661 Fn wfn 5249 ‘cfv 5254 (class class class)co 5918 1c1 7873 + caddc 7875 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 seqcseq 10518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-seqfrec 10519 |
This theorem is referenced by: seq3id 10596 |
Copyright terms: Public domain | W3C validator |