ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcvgfsum GIF version

Theorem efcvgfsum 11608
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcvgfsum.1 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))
Assertion
Ref Expression
efcvgfsum (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
Distinct variable group:   𝑘,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑘,𝑛)

Proof of Theorem efcvgfsum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0zd 9203 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → 0 ∈ ℤ)
2 nn0z 9211 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
32adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
41, 3fzfigd 10366 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (0...𝑛) ∈ Fin)
5 simpll 519 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ)
6 elfznn0 10049 . . . . . . . 8 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
76adantl 275 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
8 eftcl 11595 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
95, 7, 8syl2anc 409 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
104, 9fsumcl 11341 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1110ralrimiva 2539 . . . 4 (𝐴 ∈ ℂ → ∀𝑛 ∈ ℕ0 Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
12 efcvgfsum.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))
1312fnmpt 5314 . . . 4 (∀𝑛 ∈ ℕ0 Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ → 𝐹 Fn ℕ0)
1411, 13syl 14 . . 3 (𝐴 ∈ ℂ → 𝐹 Fn ℕ0)
15 nn0uz 9500 . . . . 5 0 = (ℤ‘0)
16 0zd 9203 . . . . 5 (𝐴 ∈ ℂ → 0 ∈ ℤ)
17 eqid 2165 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1817eftvalcn 11598 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
1918, 8eqeltrd 2243 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2015, 16, 19serf 10409 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))):ℕ0⟶ℂ)
2120ffnd 5338 . . 3 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn ℕ0)
22 simpr 109 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
23 0zd 9203 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 0 ∈ ℤ)
2422nn0zd 9311 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
2523, 24fzfigd 10366 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (0...𝑗) ∈ Fin)
26 simpll 519 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ)
27 elfznn0 10049 . . . . . . . 8 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
2827adantl 275 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0)
2926, 28, 8syl2anc 409 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
3025, 29fsumcl 11341 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
31 oveq2 5850 . . . . . . 7 (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗))
3231sumeq1d 11307 . . . . . 6 (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
3332, 12fvmptg 5562 . . . . 5 ((𝑗 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ) → (𝐹𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
3422, 30, 33syl2anc 409 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
35 simpll 519 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → 𝐴 ∈ ℂ)
36 elnn0uz 9503 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
3736biimpri 132 . . . . . . 7 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
3837adantl 275 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
3935, 38, 18syl2anc 409 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
4022, 15eleqtrdi 2259 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
4135, 38, 8syl2anc 409 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
4239, 40, 41fsum3ser 11338 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
4334, 42eqtrd 2198 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
4414, 21, 43eqfnfvd 5586 . 2 (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))))
4517efcvg 11607 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴))
4644, 45eqbrtrd 4004 1 (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444   class class class wbr 3982  cmpt 4043   Fn wfn 5183  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753   + caddc 7756   / cdiv 8568  0cn0 9114  cz 9191  cuz 9466  ...cfz 9944  seqcseq 10380  cexp 10454  !cfa 10638  cli 11219  Σcsu 11294  expce 11583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator