ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcvgfsum GIF version

Theorem efcvgfsum 12173
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcvgfsum.1 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))
Assertion
Ref Expression
efcvgfsum (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
Distinct variable group:   𝑘,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑘,𝑛)

Proof of Theorem efcvgfsum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0zd 9454 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → 0 ∈ ℤ)
2 nn0z 9462 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
32adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
41, 3fzfigd 10648 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (0...𝑛) ∈ Fin)
5 simpll 527 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ)
6 elfznn0 10306 . . . . . . . 8 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
76adantl 277 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
8 eftcl 12160 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
95, 7, 8syl2anc 411 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
104, 9fsumcl 11906 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1110ralrimiva 2603 . . . 4 (𝐴 ∈ ℂ → ∀𝑛 ∈ ℕ0 Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
12 efcvgfsum.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))
1312fnmpt 5449 . . . 4 (∀𝑛 ∈ ℕ0 Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ → 𝐹 Fn ℕ0)
1411, 13syl 14 . . 3 (𝐴 ∈ ℂ → 𝐹 Fn ℕ0)
15 nn0uz 9753 . . . . 5 0 = (ℤ‘0)
16 0zd 9454 . . . . 5 (𝐴 ∈ ℂ → 0 ∈ ℤ)
17 eqid 2229 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1817eftvalcn 12163 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
1918, 8eqeltrd 2306 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2015, 16, 19serf 10700 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))):ℕ0⟶ℂ)
2120ffnd 5473 . . 3 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn ℕ0)
22 simpr 110 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
23 0zd 9454 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 0 ∈ ℤ)
2422nn0zd 9563 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
2523, 24fzfigd 10648 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (0...𝑗) ∈ Fin)
26 simpll 527 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ)
27 elfznn0 10306 . . . . . . . 8 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
2827adantl 277 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0)
2926, 28, 8syl2anc 411 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
3025, 29fsumcl 11906 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
31 oveq2 6008 . . . . . . 7 (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗))
3231sumeq1d 11872 . . . . . 6 (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
3332, 12fvmptg 5709 . . . . 5 ((𝑗 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ) → (𝐹𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
3422, 30, 33syl2anc 411 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
35 simpll 527 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → 𝐴 ∈ ℂ)
36 elnn0uz 9756 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
3736biimpri 133 . . . . . . 7 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
3837adantl 277 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
3935, 38, 18syl2anc 411 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
4022, 15eleqtrdi 2322 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
4135, 38, 8syl2anc 411 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
4239, 40, 41fsum3ser 11903 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
4334, 42eqtrd 2262 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
4414, 21, 43eqfnfvd 5734 . 2 (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))))
4517efcvg 12172 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴))
4644, 45eqbrtrd 4104 1 (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508   class class class wbr 4082  cmpt 4144   Fn wfn 5312  cfv 5317  (class class class)co 6000  cc 7993  0cc0 7995   + caddc 7998   / cdiv 8815  0cn0 9365  cz 9442  cuz 9718  ...cfz 10200  seqcseq 10664  cexp 10755  !cfa 10942  cli 11784  Σcsu 11859  expce 12148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-ico 10086  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator