ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcvgfsum GIF version

Theorem efcvgfsum 11810
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcvgfsum.1 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))
Assertion
Ref Expression
efcvgfsum (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
Distinct variable group:   𝑘,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑘,𝑛)

Proof of Theorem efcvgfsum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0zd 9329 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → 0 ∈ ℤ)
2 nn0z 9337 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
32adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
41, 3fzfigd 10502 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (0...𝑛) ∈ Fin)
5 simpll 527 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ)
6 elfznn0 10180 . . . . . . . 8 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
76adantl 277 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
8 eftcl 11797 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
95, 7, 8syl2anc 411 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
104, 9fsumcl 11543 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1110ralrimiva 2567 . . . 4 (𝐴 ∈ ℂ → ∀𝑛 ∈ ℕ0 Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
12 efcvgfsum.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))
1312fnmpt 5380 . . . 4 (∀𝑛 ∈ ℕ0 Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ → 𝐹 Fn ℕ0)
1411, 13syl 14 . . 3 (𝐴 ∈ ℂ → 𝐹 Fn ℕ0)
15 nn0uz 9627 . . . . 5 0 = (ℤ‘0)
16 0zd 9329 . . . . 5 (𝐴 ∈ ℂ → 0 ∈ ℤ)
17 eqid 2193 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1817eftvalcn 11800 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
1918, 8eqeltrd 2270 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
2015, 16, 19serf 10554 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))):ℕ0⟶ℂ)
2120ffnd 5404 . . 3 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn ℕ0)
22 simpr 110 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
23 0zd 9329 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 0 ∈ ℤ)
2422nn0zd 9437 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
2523, 24fzfigd 10502 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (0...𝑗) ∈ Fin)
26 simpll 527 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ)
27 elfznn0 10180 . . . . . . . 8 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
2827adantl 277 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0)
2926, 28, 8syl2anc 411 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
3025, 29fsumcl 11543 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
31 oveq2 5926 . . . . . . 7 (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗))
3231sumeq1d 11509 . . . . . 6 (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
3332, 12fvmptg 5633 . . . . 5 ((𝑗 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) ∈ ℂ) → (𝐹𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
3422, 30, 33syl2anc 411 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
35 simpll 527 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → 𝐴 ∈ ℂ)
36 elnn0uz 9630 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
3736biimpri 133 . . . . . . 7 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
3837adantl 277 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
3935, 38, 18syl2anc 411 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
4022, 15eleqtrdi 2286 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
4135, 38, 8syl2anc 411 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
4239, 40, 41fsum3ser 11540 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
4334, 42eqtrd 2226 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
4414, 21, 43eqfnfvd 5658 . 2 (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))))
4517efcvg 11809 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴))
4644, 45eqbrtrd 4051 1 (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472   class class class wbr 4029  cmpt 4090   Fn wfn 5249  cfv 5254  (class class class)co 5918  cc 7870  0cc0 7872   + caddc 7875   / cdiv 8691  0cn0 9240  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  cexp 10609  !cfa 10796  cli 11421  Σcsu 11496  expce 11785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator