Step | Hyp | Ref
| Expression |
1 | | 0zd 9203 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ 0 ∈ ℤ) |
2 | | nn0z 9211 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
3 | 2 | adantl 275 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ 𝑛 ∈
ℤ) |
4 | 1, 3 | fzfigd 10366 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (0...𝑛) ∈
Fin) |
5 | | simpll 519 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ) |
6 | | elfznn0 10049 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
7 | 6 | adantl 275 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) |
8 | | eftcl 11595 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
9 | 5, 7, 8 | syl2anc 409 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑛)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
10 | 4, 9 | fsumcl 11341 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ Σ𝑘 ∈
(0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
11 | 10 | ralrimiva 2539 |
. . . 4
⊢ (𝐴 ∈ ℂ →
∀𝑛 ∈
ℕ0 Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
12 | | efcvgfsum.1 |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) |
13 | 12 | fnmpt 5314 |
. . . 4
⊢
(∀𝑛 ∈
ℕ0 Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ → 𝐹 Fn ℕ0) |
14 | 11, 13 | syl 14 |
. . 3
⊢ (𝐴 ∈ ℂ → 𝐹 Fn
ℕ0) |
15 | | nn0uz 9500 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
16 | | 0zd 9203 |
. . . . 5
⊢ (𝐴 ∈ ℂ → 0 ∈
ℤ) |
17 | | eqid 2165 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
18 | 17 | eftvalcn 11598 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
19 | 18, 8 | eqeltrd 2243 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
20 | 15, 16, 19 | serf 10409 |
. . . 4
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))):ℕ0⟶ℂ) |
21 | 20 | ffnd 5338 |
. . 3
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0) |
22 | | simpr 109 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
ℕ0) |
23 | | 0zd 9203 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 0 ∈ ℤ) |
24 | 22 | nn0zd 9311 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
ℤ) |
25 | 23, 24 | fzfigd 10366 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (0...𝑗) ∈
Fin) |
26 | | simpll 519 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ) |
27 | | elfznn0 10049 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0) |
28 | 27 | adantl 275 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0) |
29 | 26, 28, 8 | syl2anc 409 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑗)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
30 | 25, 29 | fsumcl 11341 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ Σ𝑘 ∈
(0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
31 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗)) |
32 | 31 | sumeq1d 11307 |
. . . . . 6
⊢ (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
33 | 32, 12 | fvmptg 5562 |
. . . . 5
⊢ ((𝑗 ∈ ℕ0
∧ Σ𝑘 ∈
(0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) → (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
34 | 22, 30, 33 | syl2anc 409 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
35 | | simpll 519 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → 𝐴 ∈ ℂ) |
36 | | elnn0uz 9503 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
37 | 36 | biimpri 132 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ ℕ0) |
38 | 37 | adantl 275 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → 𝑘 ∈ ℕ0) |
39 | 35, 38, 18 | syl2anc 409 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
40 | 22, 15 | eleqtrdi 2259 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
(ℤ≥‘0)) |
41 | 35, 38, 8 | syl2anc 409 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
42 | 39, 40, 41 | fsum3ser 11338 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ Σ𝑘 ∈
(0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
43 | 34, 42 | eqtrd 2198 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
44 | 14, 21, 43 | eqfnfvd 5586 |
. 2
⊢ (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))) |
45 | 17 | efcvg 11607 |
. 2
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴)) |
46 | 44, 45 | eqbrtrd 4004 |
1
⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |