| Step | Hyp | Ref
 | Expression | 
| 1 |   | 0zd 9338 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ 0 ∈ ℤ) | 
| 2 |   | nn0z 9346 | 
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) | 
| 3 | 2 | adantl 277 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ 𝑛 ∈
ℤ) | 
| 4 | 1, 3 | fzfigd 10523 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (0...𝑛) ∈
Fin) | 
| 5 |   | simpll 527 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ ℂ) | 
| 6 |   | elfznn0 10189 | 
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) | 
| 7 | 6 | adantl 277 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) | 
| 8 |   | eftcl 11819 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | 
| 9 | 5, 7, 8 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑛)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | 
| 10 | 4, 9 | fsumcl 11565 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ Σ𝑘 ∈
(0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | 
| 11 | 10 | ralrimiva 2570 | 
. . . 4
⊢ (𝐴 ∈ ℂ →
∀𝑛 ∈
ℕ0 Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | 
| 12 |   | efcvgfsum.1 | 
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) | 
| 13 | 12 | fnmpt 5384 | 
. . . 4
⊢
(∀𝑛 ∈
ℕ0 Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ → 𝐹 Fn ℕ0) | 
| 14 | 11, 13 | syl 14 | 
. . 3
⊢ (𝐴 ∈ ℂ → 𝐹 Fn
ℕ0) | 
| 15 |   | nn0uz 9636 | 
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) | 
| 16 |   | 0zd 9338 | 
. . . . 5
⊢ (𝐴 ∈ ℂ → 0 ∈
ℤ) | 
| 17 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | 
| 18 | 17 | eftvalcn 11822 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) | 
| 19 | 18, 8 | eqeltrd 2273 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) | 
| 20 | 15, 16, 19 | serf 10575 | 
. . . 4
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))):ℕ0⟶ℂ) | 
| 21 | 20 | ffnd 5408 | 
. . 3
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0) | 
| 22 |   | simpr 110 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
ℕ0) | 
| 23 |   | 0zd 9338 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 0 ∈ ℤ) | 
| 24 | 22 | nn0zd 9446 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
ℤ) | 
| 25 | 23, 24 | fzfigd 10523 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (0...𝑗) ∈
Fin) | 
| 26 |   | simpll 527 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ) | 
| 27 |   | elfznn0 10189 | 
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0) | 
| 28 | 27 | adantl 277 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0) | 
| 29 | 26, 28, 8 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑗)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | 
| 30 | 25, 29 | fsumcl 11565 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ Σ𝑘 ∈
(0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | 
| 31 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗)) | 
| 32 | 31 | sumeq1d 11531 | 
. . . . . 6
⊢ (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) | 
| 33 | 32, 12 | fvmptg 5637 | 
. . . . 5
⊢ ((𝑗 ∈ ℕ0
∧ Σ𝑘 ∈
(0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) → (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) | 
| 34 | 22, 30, 33 | syl2anc 411 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) | 
| 35 |   | simpll 527 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → 𝐴 ∈ ℂ) | 
| 36 |   | elnn0uz 9639 | 
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) | 
| 37 | 36 | biimpri 133 | 
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ ℕ0) | 
| 38 | 37 | adantl 277 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → 𝑘 ∈ ℕ0) | 
| 39 | 35, 38, 18 | syl2anc 411 | 
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) | 
| 40 | 22, 15 | eleqtrdi 2289 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
(ℤ≥‘0)) | 
| 41 | 35, 38, 8 | syl2anc 411 | 
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | 
| 42 | 39, 40, 41 | fsum3ser 11562 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ Σ𝑘 ∈
(0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) | 
| 43 | 34, 42 | eqtrd 2229 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) | 
| 44 | 14, 21, 43 | eqfnfvd 5662 | 
. 2
⊢ (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))) | 
| 45 | 17 | efcvg 11831 | 
. 2
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴)) | 
| 46 | 44, 45 | eqbrtrd 4055 | 
1
⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |