| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efcl | GIF version | ||
| Description: Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| efcl | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff 12160 | . 2 ⊢ exp:ℂ⟶ℂ | |
| 2 | 1 | ffvelcdmi 5762 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ‘cfv 5314 ℂcc 7985 expce 12139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-ico 10078 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-fac 10935 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 df-ef 12145 |
| This theorem is referenced by: efap0 12174 efne0 12175 efneg 12176 eff2 12177 efsub 12178 efexp 12179 ef4p 12191 sinval 12199 cosval 12200 sinf 12201 cosf 12202 tanval2ap 12210 tanval3ap 12211 resinval 12212 recosval 12213 resincl 12217 recoscl 12218 sinneg 12223 cosneg 12224 efival 12229 absef 12267 efieq1re 12269 dveflem 15385 dvef 15386 reeff1oleme 15431 efper 15466 rpcxpef 15553 rpcncxpcl 15561 |
| Copyright terms: Public domain | W3C validator |