ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelrn GIF version

Theorem ffvelrn 5380
Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.)
Assertion
Ref Expression
ffvelrn ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)

Proof of Theorem ffvelrn
StepHypRef Expression
1 ffn 5117 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnfvelrn 5379 . . 3 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹𝐶) ∈ ran 𝐹)
31, 2sylan 277 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶) ∈ ran 𝐹)
4 frn 5124 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
54sseld 3011 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝐶) ∈ ran 𝐹 → (𝐹𝐶) ∈ 𝐵))
65adantr 270 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → ((𝐹𝐶) ∈ ran 𝐹 → (𝐹𝐶) ∈ 𝐵))
73, 6mpd 13 1 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1436  ran crn 4405   Fn wfn 4967  wf 4968  cfv 4972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2616  df-sbc 2829  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-id 4087  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-fv 4980
This theorem is referenced by:  ffvelrni  5381  ffvelrnda  5382  dffo3  5394  ffnfv  5401  ffvresb  5406  fcompt  5412  fsn2  5416  fvconst  5430  foco2  5476  fcofo  5506  cocan1  5509  isocnv  5533  isores2  5535  isopolem  5543  isosolem  5545  fovrn  5725  off  5806  mapsncnv  6385  2dom  6455  enm  6469  xpdom2  6480  xpmapenlem  6498  isotilem  6622  updjudhf  6691  exmidomniim  6718  shftf  10106  nn0seqcvgd  10817  eucialg  10835  phimullem  10995
  Copyright terms: Public domain W3C validator