Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffvelrn | GIF version |
Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.) |
Ref | Expression |
---|---|
ffvelrn | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5345 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfvelrn 5626 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) | |
3 | 1, 2 | sylan 281 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ ran 𝐹) |
4 | frn 5354 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
5 | 4 | sseld 3146 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
6 | 5 | adantr 274 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) ∈ ran 𝐹 → (𝐹‘𝐶) ∈ 𝐵)) |
7 | 3, 6 | mpd 13 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ran crn 4610 Fn wfn 5191 ⟶wf 5192 ‘cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 |
This theorem is referenced by: ffvelrni 5628 ffvelrnda 5629 dffo3 5641 ffnfv 5652 ffvresb 5657 fcompt 5664 fsn2 5668 fvconst 5682 foco2 5731 fcofo 5761 cocan1 5764 isocnv 5788 isores2 5790 isopolem 5799 isosolem 5801 fovrn 5993 off 6071 mapsncnv 6671 2dom 6781 enm 6796 xpdom2 6807 xpmapenlem 6825 fiintim 6904 isotilem 6981 updjudhf 7054 exmidomniim 7115 shftf 10787 summodclem2a 11337 isumcl 11381 mertenslem2 11492 nn0seqcvgd 11988 algrf 11992 eucalg 12006 phimullem 12172 pcmpt 12288 pcprod 12291 mhmpropd 12682 upxp 13031 uptx 13033 txhmeo 13078 cncfmet 13338 dvaddxxbr 13424 dvcj 13432 dvfre 13433 lgsdir 13695 lgsdi 13697 bj-charfunr 13810 |
Copyright terms: Public domain | W3C validator |