ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomulcn GIF version

Theorem mpomulcn 15248
Description: Complex number multiplication is a continuous function. (Contributed by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
mpomulcn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
mpomulcn (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem mpomulcn
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 𝑧 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpomulcn.j . . 3 𝐽 = (TopOpen‘ℂfld)
21cnfldtopn 15221 . 2 𝐽 = (MetOpen‘(abs ∘ − ))
3 mpomulf 8144 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
4 mulcn2 11831 . . 3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎))
5 simplr 528 . . . . . . . . . . . 12 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → 𝑢 ∈ ℂ)
6 simplll 533 . . . . . . . . . . . . 13 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) → 𝑣 ∈ ℂ)
7 simplr 528 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢)
87fvoveq1d 6029 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑑𝑏)) = (abs‘(𝑢𝑏)))
98breq1d 4093 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑑𝑏)) < 𝑧 ↔ (abs‘(𝑢𝑏)) < 𝑧))
10 simpr 110 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣)
1110fvoveq1d 6029 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑒𝑐)) = (abs‘(𝑣𝑐)))
1211breq1d 4093 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑒𝑐)) < 𝑤 ↔ (abs‘(𝑣𝑐)) < 𝑤))
139, 12anbi12d 473 . . . . . . . . . . . . . 14 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) ↔ ((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤)))
14 simplr 528 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢)
1514eqcomd 2235 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑢 = 𝑑)
16 simpr 110 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣)
1716eqcomd 2235 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 = 𝑒)
1815, 17oveq12d 6025 . . . . . . . . . . . . . . . . . . 19 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑑 · 𝑒))
19 simplr 528 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) → 𝑢 ∈ ℂ)
20 simplll 533 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 ∈ ℂ)
21 tru 1399 . . . . . . . . . . . . . . . . . . . . . 22
22 oveq1 6014 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
23 oveq2 6015 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2422, 23cbvmpov 6090 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
2524a1i 9 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)))
26 eqidd 2230 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ⟨𝑢, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
27 mulcl 8134 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
28273adant1 1039 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
2925, 26, 28fvmpopr2d 6147 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = (𝑢 · 𝑣))
3029eqcomd 2235 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩))
3121, 30mp3an1 1358 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩))
32 df-ov 6010 . . . . . . . . . . . . . . . . . . . . 21 (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩)
3331, 32eqtr4di 2280 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3419, 20, 33syl2an2r 597 . . . . . . . . . . . . . . . . . . 19 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3518, 34eqtr3d 2264 . . . . . . . . . . . . . . . . . 18 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3635adantllr 481 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
37 df-ov 6010 . . . . . . . . . . . . . . . . . . 19 (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑏, 𝑐⟩)
38 oveq1 6014 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (𝑥 · 𝑦) = (𝑏 · 𝑦))
39 oveq2 6015 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑐 → (𝑏 · 𝑦) = (𝑏 · 𝑐))
4038, 39cbvmpov 6090 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐))
4140a1i 9 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ+ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐)))
42 eqidd 2230 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ+ → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑐⟩)
43 mulcl 8134 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ)
44433adant1 1039 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ)
4541, 42, 44fvmpopr2d 6147 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑏, 𝑐⟩) = (𝑏 · 𝑐))
4637, 45eqtr2id 2275 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))
4746ad3antlr 493 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))
4836, 47oveq12d 6025 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((𝑑 · 𝑒) − (𝑏 · 𝑐)) = ((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)))
4948fveq2d 5633 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) = (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))))
5049breq1d 4093 . . . . . . . . . . . . . 14 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎 ↔ (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))
5113, 50imbi12d 234 . . . . . . . . . . . . 13 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) ↔ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
526, 51rspcdv 2910 . . . . . . . . . . . 12 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) → (∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
535, 52rspcimdv 2908 . . . . . . . . . . 11 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5453expimpd 363 . . . . . . . . . 10 ((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5554ex 115 . . . . . . . . 9 (𝑣 ∈ ℂ → (𝑢 ∈ ℂ → (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5655com13 80 . . . . . . . 8 (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → (𝑣 ∈ ℂ → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5756ralrimdv 2609 . . . . . . 7 (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5857ex 115 . . . . . 6 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5958ralrimdv 2609 . . . . 5 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
6059reximdv 2631 . . . 4 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
6160reximdv 2631 . . 3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
624, 61mpd 13 . 2 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))
632, 3, 62addcncntoplem 15243 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wtru 1396  wcel 2200  wral 2508  wrex 2509  cop 3669   class class class wbr 4083  cfv 5318  (class class class)co 6007  cmpo 6009  cc 8005   · cmul 8012   < clt 8189  cmin 8325  +crp 9857  abscabs 11516  TopOpenctopn 13281  fldccnfld 14528   Cn ccn 14867   ×t ctx 14934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-fz 10213  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-rest 13282  df-topn 13283  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529  df-top 14680  df-topon 14693  df-bases 14725  df-cn 14870  df-cnp 14871  df-tx 14935
This theorem is referenced by:  expcn  15251  plycn  15444
  Copyright terms: Public domain W3C validator