| Step | Hyp | Ref
 | Expression | 
| 1 |   | mpomulcn.j | 
. . 3
⊢ 𝐽 =
(TopOpen‘ℂfld) | 
| 2 | 1 | cnfldtopn 14775 | 
. 2
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) | 
| 3 |   | mpomulf 8016 | 
. 2
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ ×
ℂ)⟶ℂ | 
| 4 |   | mulcn2 11477 | 
. . 3
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ ∃𝑧 ∈
ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ
(((abs‘(𝑑 −
𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) | 
| 5 |   | simplr 528 | 
. . . . . . . . . . . 12
⊢ (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ))
→ 𝑢 ∈
ℂ) | 
| 6 |   | simplll 533 | 
. . . . . . . . . . . . 13
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ))
∧ 𝑑 = 𝑢) → 𝑣 ∈ ℂ) | 
| 7 |   | simplr 528 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢) | 
| 8 | 7 | fvoveq1d 5944 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑑 − 𝑏)) = (abs‘(𝑢 − 𝑏))) | 
| 9 | 8 | breq1d 4043 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑑 − 𝑏)) < 𝑧 ↔ (abs‘(𝑢 − 𝑏)) < 𝑧)) | 
| 10 |   | simpr 110 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣) | 
| 11 | 10 | fvoveq1d 5944 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑒 − 𝑐)) = (abs‘(𝑣 − 𝑐))) | 
| 12 | 11 | breq1d 4043 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑒 − 𝑐)) < 𝑤 ↔ (abs‘(𝑣 − 𝑐)) < 𝑤)) | 
| 13 | 9, 12 | anbi12d 473 | 
. . . . . . . . . . . . . 14
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (((abs‘(𝑑 − 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) ↔ ((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤))) | 
| 14 |   | simplr 528 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢) | 
| 15 | 14 | eqcomd 2202 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑢 = 𝑑) | 
| 16 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣) | 
| 17 | 16 | eqcomd 2202 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 = 𝑒) | 
| 18 | 15, 17 | oveq12d 5940 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑑 · 𝑒)) | 
| 19 |   | simplr 528 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) → 𝑢 ∈ ℂ) | 
| 20 |   | simplll 533 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 ∈ ℂ) | 
| 21 |   | tru 1368 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
⊤ | 
| 22 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦)) | 
| 23 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣)) | 
| 24 | 22, 23 | cbvmpov 6002 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) | 
| 25 | 24 | a1i 9 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⊤
→ (𝑥 ∈ ℂ,
𝑦 ∈ ℂ ↦
(𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))) | 
| 26 |   | eqidd 2197 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⊤
→ 〈𝑢, 𝑣〉 = 〈𝑢, 𝑣〉) | 
| 27 |   | mulcl 8006 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ) | 
| 28 | 27 | 3adant1 1017 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((⊤ ∧ 𝑢
∈ ℂ ∧ 𝑣
∈ ℂ) → (𝑢
· 𝑣) ∈
ℂ) | 
| 29 | 25, 26, 28 | fvmpopr2d 6059 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((⊤ ∧ 𝑢
∈ ℂ ∧ 𝑣
∈ ℂ) → ((𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 ·
𝑦))‘〈𝑢, 𝑣〉) = (𝑢 · 𝑣)) | 
| 30 | 29 | eqcomd 2202 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((⊤ ∧ 𝑢
∈ ℂ ∧ 𝑣
∈ ℂ) → (𝑢
· 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉)) | 
| 31 | 21, 30 | mp3an1 1335 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉)) | 
| 32 |   | df-ov 5925 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉) | 
| 33 | 31, 32 | eqtr4di 2247 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣)) | 
| 34 | 19, 20, 33 | syl2an2r 595 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣)) | 
| 35 | 18, 34 | eqtr3d 2231 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣)) | 
| 36 | 35 | adantllr 481 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣)) | 
| 37 |   | df-ov 5925 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑏, 𝑐〉) | 
| 38 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑏 → (𝑥 · 𝑦) = (𝑏 · 𝑦)) | 
| 39 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑐 → (𝑏 · 𝑦) = (𝑏 · 𝑐)) | 
| 40 | 38, 39 | cbvmpov 6002 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐)) | 
| 41 | 40 | a1i 9 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ ℝ+
→ (𝑥 ∈ ℂ,
𝑦 ∈ ℂ ↦
(𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐))) | 
| 42 |   | eqidd 2197 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ ℝ+
→ 〈𝑏, 𝑐〉 = 〈𝑏, 𝑐〉) | 
| 43 |   | mulcl 8006 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ) | 
| 44 | 43 | 3adant1 1017 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (𝑏 · 𝑐) ∈
ℂ) | 
| 45 | 41, 42, 44 | fvmpopr2d 6059 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ ((𝑥 ∈ ℂ,
𝑦 ∈ ℂ ↦
(𝑥 · 𝑦))‘〈𝑏, 𝑐〉) = (𝑏 · 𝑐)) | 
| 46 | 37, 45 | eqtr2id 2242 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)) | 
| 47 | 46 | ad3antlr 493 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)) | 
| 48 | 36, 47 | oveq12d 5940 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → ((𝑑 · 𝑒) − (𝑏 · 𝑐)) = ((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) | 
| 49 | 48 | fveq2d 5562 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) = (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)))) | 
| 50 | 49 | breq1d 4043 | 
. . . . . . . . . . . . . 14
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → ((abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎 ↔ (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)) | 
| 51 | 13, 50 | imbi12d 234 | 
. . . . . . . . . . . . 13
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → ((((abs‘(𝑑 − 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) ↔ (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) | 
| 52 | 6, 51 | rspcdv 2871 | 
. . . . . . . . . . . 12
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ))
∧ 𝑑 = 𝑢) → (∀𝑒 ∈ ℂ
(((abs‘(𝑑 −
𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) | 
| 53 | 5, 52 | rspcimdv 2869 | 
. . . . . . . . . . 11
⊢ (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ))
→ (∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) | 
| 54 | 53 | expimpd 363 | 
. . . . . . . . . 10
⊢ ((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
∧ ∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) | 
| 55 | 54 | ex 115 | 
. . . . . . . . 9
⊢ (𝑣 ∈ ℂ → (𝑢 ∈ ℂ → (((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
∧ ∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))) | 
| 56 | 55 | com13 80 | 
. . . . . . . 8
⊢ (((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
∧ ∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → (𝑣 ∈ ℂ → (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))) | 
| 57 | 56 | ralrimdv 2576 | 
. . . . . . 7
⊢ (((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
∧ ∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) | 
| 58 | 57 | ex 115 | 
. . . . . 6
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))) | 
| 59 | 58 | ralrimdv 2576 | 
. . . . 5
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) | 
| 60 | 59 | reximdv 2598 | 
. . . 4
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (∃𝑤 ∈
ℝ+ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑 − 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) | 
| 61 | 60 | reximdv 2598 | 
. . 3
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (∃𝑧 ∈
ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ
(((abs‘(𝑑 −
𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ ℂ
∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) | 
| 62 | 4, 61 | mpd 13 | 
. 2
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ ∃𝑧 ∈
ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)) | 
| 63 | 2, 3, 62 | addcncntoplem 14797 | 
1
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |