ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomulcn GIF version

Theorem mpomulcn 14745
Description: Complex number multiplication is a continuous function. (Contributed by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
mpomulcn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
mpomulcn (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem mpomulcn
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 𝑧 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpomulcn.j . . 3 𝐽 = (TopOpen‘ℂfld)
21cnfldtopn 14718 . 2 𝐽 = (MetOpen‘(abs ∘ − ))
3 mpomulf 8011 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
4 mulcn2 11458 . . 3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎))
5 simplr 528 . . . . . . . . . . . 12 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → 𝑢 ∈ ℂ)
6 simplll 533 . . . . . . . . . . . . 13 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) → 𝑣 ∈ ℂ)
7 simplr 528 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢)
87fvoveq1d 5941 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑑𝑏)) = (abs‘(𝑢𝑏)))
98breq1d 4040 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑑𝑏)) < 𝑧 ↔ (abs‘(𝑢𝑏)) < 𝑧))
10 simpr 110 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣)
1110fvoveq1d 5941 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑒𝑐)) = (abs‘(𝑣𝑐)))
1211breq1d 4040 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑒𝑐)) < 𝑤 ↔ (abs‘(𝑣𝑐)) < 𝑤))
139, 12anbi12d 473 . . . . . . . . . . . . . 14 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) ↔ ((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤)))
14 simplr 528 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢)
1514eqcomd 2199 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑢 = 𝑑)
16 simpr 110 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣)
1716eqcomd 2199 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 = 𝑒)
1815, 17oveq12d 5937 . . . . . . . . . . . . . . . . . . 19 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑑 · 𝑒))
19 simplr 528 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) → 𝑢 ∈ ℂ)
20 simplll 533 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 ∈ ℂ)
21 tru 1368 . . . . . . . . . . . . . . . . . . . . . 22
22 oveq1 5926 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
23 oveq2 5927 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2422, 23cbvmpov 5999 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
2524a1i 9 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)))
26 eqidd 2194 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ⟨𝑢, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
27 mulcl 8001 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
28273adant1 1017 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
2925, 26, 28fvmpopr2d 6056 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = (𝑢 · 𝑣))
3029eqcomd 2199 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩))
3121, 30mp3an1 1335 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩))
32 df-ov 5922 . . . . . . . . . . . . . . . . . . . . 21 (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩)
3331, 32eqtr4di 2244 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3419, 20, 33syl2an2r 595 . . . . . . . . . . . . . . . . . . 19 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3518, 34eqtr3d 2228 . . . . . . . . . . . . . . . . . 18 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3635adantllr 481 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
37 df-ov 5922 . . . . . . . . . . . . . . . . . . 19 (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑏, 𝑐⟩)
38 oveq1 5926 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (𝑥 · 𝑦) = (𝑏 · 𝑦))
39 oveq2 5927 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑐 → (𝑏 · 𝑦) = (𝑏 · 𝑐))
4038, 39cbvmpov 5999 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐))
4140a1i 9 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ+ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐)))
42 eqidd 2194 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ+ → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑐⟩)
43 mulcl 8001 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ)
44433adant1 1017 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ)
4541, 42, 44fvmpopr2d 6056 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑏, 𝑐⟩) = (𝑏 · 𝑐))
4637, 45eqtr2id 2239 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))
4746ad3antlr 493 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))
4836, 47oveq12d 5937 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((𝑑 · 𝑒) − (𝑏 · 𝑐)) = ((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)))
4948fveq2d 5559 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) = (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))))
5049breq1d 4040 . . . . . . . . . . . . . 14 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎 ↔ (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))
5113, 50imbi12d 234 . . . . . . . . . . . . 13 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) ↔ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
526, 51rspcdv 2868 . . . . . . . . . . . 12 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) → (∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
535, 52rspcimdv 2866 . . . . . . . . . . 11 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5453expimpd 363 . . . . . . . . . 10 ((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5554ex 115 . . . . . . . . 9 (𝑣 ∈ ℂ → (𝑢 ∈ ℂ → (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5655com13 80 . . . . . . . 8 (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → (𝑣 ∈ ℂ → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5756ralrimdv 2573 . . . . . . 7 (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5857ex 115 . . . . . 6 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5958ralrimdv 2573 . . . . 5 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
6059reximdv 2595 . . . 4 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
6160reximdv 2595 . . 3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
624, 61mpd 13 . 2 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))
632, 3, 62addcncntoplem 14740 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wtru 1365  wcel 2164  wral 2472  wrex 2473  cop 3622   class class class wbr 4030  cfv 5255  (class class class)co 5919  cmpo 5921  cc 7872   · cmul 7879   < clt 8056  cmin 8192  +crp 9722  abscabs 11144  TopOpenctopn 12854  fldccnfld 14055   Cn ccn 14364   ×t ctx 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-fz 10078  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-starv 12713  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-rest 12855  df-topn 12856  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056  df-top 14177  df-topon 14190  df-bases 14222  df-cn 14367  df-cnp 14368  df-tx 14432
This theorem is referenced by:  expcn  14748  plycn  14932
  Copyright terms: Public domain W3C validator