ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomulcn GIF version

Theorem mpomulcn 15205
Description: Complex number multiplication is a continuous function. (Contributed by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
mpomulcn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
mpomulcn (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem mpomulcn
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 𝑧 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpomulcn.j . . 3 𝐽 = (TopOpen‘ℂfld)
21cnfldtopn 15178 . 2 𝐽 = (MetOpen‘(abs ∘ − ))
3 mpomulf 8104 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
4 mulcn2 11789 . . 3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎))
5 simplr 528 . . . . . . . . . . . 12 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → 𝑢 ∈ ℂ)
6 simplll 533 . . . . . . . . . . . . 13 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) → 𝑣 ∈ ℂ)
7 simplr 528 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢)
87fvoveq1d 5996 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑑𝑏)) = (abs‘(𝑢𝑏)))
98breq1d 4072 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑑𝑏)) < 𝑧 ↔ (abs‘(𝑢𝑏)) < 𝑧))
10 simpr 110 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣)
1110fvoveq1d 5996 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑒𝑐)) = (abs‘(𝑣𝑐)))
1211breq1d 4072 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑒𝑐)) < 𝑤 ↔ (abs‘(𝑣𝑐)) < 𝑤))
139, 12anbi12d 473 . . . . . . . . . . . . . 14 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) ↔ ((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤)))
14 simplr 528 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢)
1514eqcomd 2215 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑢 = 𝑑)
16 simpr 110 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣)
1716eqcomd 2215 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 = 𝑒)
1815, 17oveq12d 5992 . . . . . . . . . . . . . . . . . . 19 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑑 · 𝑒))
19 simplr 528 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) → 𝑢 ∈ ℂ)
20 simplll 533 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 ∈ ℂ)
21 tru 1379 . . . . . . . . . . . . . . . . . . . . . 22
22 oveq1 5981 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
23 oveq2 5982 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2422, 23cbvmpov 6055 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
2524a1i 9 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)))
26 eqidd 2210 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ⟨𝑢, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
27 mulcl 8094 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
28273adant1 1020 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
2925, 26, 28fvmpopr2d 6112 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = (𝑢 · 𝑣))
3029eqcomd 2215 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩))
3121, 30mp3an1 1339 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩))
32 df-ov 5977 . . . . . . . . . . . . . . . . . . . . 21 (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩)
3331, 32eqtr4di 2260 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3419, 20, 33syl2an2r 597 . . . . . . . . . . . . . . . . . . 19 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3518, 34eqtr3d 2244 . . . . . . . . . . . . . . . . . 18 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3635adantllr 481 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
37 df-ov 5977 . . . . . . . . . . . . . . . . . . 19 (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑏, 𝑐⟩)
38 oveq1 5981 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (𝑥 · 𝑦) = (𝑏 · 𝑦))
39 oveq2 5982 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑐 → (𝑏 · 𝑦) = (𝑏 · 𝑐))
4038, 39cbvmpov 6055 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐))
4140a1i 9 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ+ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐)))
42 eqidd 2210 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ+ → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑐⟩)
43 mulcl 8094 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ)
44433adant1 1020 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ)
4541, 42, 44fvmpopr2d 6112 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑏, 𝑐⟩) = (𝑏 · 𝑐))
4637, 45eqtr2id 2255 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))
4746ad3antlr 493 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))
4836, 47oveq12d 5992 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((𝑑 · 𝑒) − (𝑏 · 𝑐)) = ((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)))
4948fveq2d 5607 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) = (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))))
5049breq1d 4072 . . . . . . . . . . . . . 14 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎 ↔ (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))
5113, 50imbi12d 234 . . . . . . . . . . . . 13 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) ↔ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
526, 51rspcdv 2890 . . . . . . . . . . . 12 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) → (∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
535, 52rspcimdv 2888 . . . . . . . . . . 11 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5453expimpd 363 . . . . . . . . . 10 ((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5554ex 115 . . . . . . . . 9 (𝑣 ∈ ℂ → (𝑢 ∈ ℂ → (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5655com13 80 . . . . . . . 8 (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → (𝑣 ∈ ℂ → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5756ralrimdv 2589 . . . . . . 7 (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5857ex 115 . . . . . 6 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5958ralrimdv 2589 . . . . 5 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
6059reximdv 2611 . . . 4 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
6160reximdv 2611 . . 3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
624, 61mpd 13 . 2 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))
632, 3, 62addcncntoplem 15200 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wtru 1376  wcel 2180  wral 2488  wrex 2489  cop 3649   class class class wbr 4062  cfv 5294  (class class class)co 5974  cmpo 5976  cc 7965   · cmul 7972   < clt 8149  cmin 8285  +crp 9817  abscabs 11474  TopOpenctopn 13239  fldccnfld 14485   Cn ccn 14824   ×t ctx 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-fz 10173  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-mulr 13090  df-starv 13091  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-rest 13240  df-topn 13241  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-top 14637  df-topon 14650  df-bases 14682  df-cn 14827  df-cnp 14828  df-tx 14892
This theorem is referenced by:  expcn  15208  plycn  15401
  Copyright terms: Public domain W3C validator