| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplinvd | GIF version | ||
| Description: The left inverse of a group element. Deduction associated with grplinv 13252. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grplinvd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplinvd.p | ⊢ + = (+g‘𝐺) |
| grplinvd.u | ⊢ 0 = (0g‘𝐺) |
| grplinvd.n | ⊢ 𝑁 = (invg‘𝐺) |
| grplinvd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grplinvd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grplinvd | ⊢ (𝜑 → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplinvd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grplinvd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grplinvd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grplinvd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 5 | grplinvd.u | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 6 | grplinvd.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 7 | 3, 4, 5, 6 | grplinv 13252 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| 8 | 1, 2, 7 | syl2anc 411 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 0gc0g 12958 Grpcgrp 13202 invgcminusg 13203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 |
| This theorem is referenced by: prdsinvlem 13310 rngmneg2 13580 |
| Copyright terms: Public domain | W3C validator |