ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngmneg2 GIF version

Theorem rngmneg2 13906
Description: Negation of a product in a non-unital ring (mulneg2 8538 analog). In contrast to ringmneg2 14012, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
rngneglmul.b 𝐵 = (Base‘𝑅)
rngneglmul.t · = (.r𝑅)
rngneglmul.n 𝑁 = (invg𝑅)
rngneglmul.r (𝜑𝑅 ∈ Rng)
rngneglmul.x (𝜑𝑋𝐵)
rngneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
rngmneg2 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem rngmneg2
StepHypRef Expression
1 rngneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
2 eqid 2229 . . . . . 6 (+g𝑅) = (+g𝑅)
3 eqid 2229 . . . . . 6 (0g𝑅) = (0g𝑅)
4 rngneglmul.n . . . . . 6 𝑁 = (invg𝑅)
5 rngneglmul.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
6 rnggrp 13896 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
75, 6syl 14 . . . . . 6 (𝜑𝑅 ∈ Grp)
8 rngneglmul.y . . . . . 6 (𝜑𝑌𝐵)
91, 2, 3, 4, 7, 8grplinvd 13583 . . . . 5 (𝜑 → ((𝑁𝑌)(+g𝑅)𝑌) = (0g𝑅))
109oveq2d 6016 . . . 4 (𝜑 → (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (𝑋 · (0g𝑅)))
11 rngneglmul.x . . . . 5 (𝜑𝑋𝐵)
12 rngneglmul.t . . . . . 6 · = (.r𝑅)
131, 12, 3rngrz 13904 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
145, 11, 13syl2anc 411 . . . 4 (𝜑 → (𝑋 · (0g𝑅)) = (0g𝑅))
1510, 14eqtrd 2262 . . 3 (𝜑 → (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (0g𝑅))
161, 12rngcl 13902 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
175, 11, 8, 16syl3anc 1271 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
181, 4, 7, 8grpinvcld 13577 . . . . . 6 (𝜑 → (𝑁𝑌) ∈ 𝐵)
191, 12rngcl 13902 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑋 · (𝑁𝑌)) ∈ 𝐵)
205, 11, 18, 19syl3anc 1271 . . . . 5 (𝜑 → (𝑋 · (𝑁𝑌)) ∈ 𝐵)
211, 2, 3, 4grpinvid2 13581 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · (𝑁𝑌)) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)) ↔ ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (0g𝑅)))
227, 17, 20, 21syl3anc 1271 . . . 4 (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)) ↔ ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (0g𝑅)))
231, 2, 12rngdi 13898 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵𝑌𝐵)) → (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)))
2423eqcomd 2235 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)))
255, 11, 18, 8, 24syl13anc 1273 . . . . 5 (𝜑 → ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)))
2625eqeq1d 2238 . . . 4 (𝜑 → (((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (0g𝑅) ↔ (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (0g𝑅)))
2722, 26bitrd 188 . . 3 (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)) ↔ (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (0g𝑅)))
2815, 27mpbird 167 . 2 (𝜑 → (𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)))
2928eqcomd 2235 1 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  .rcmulr 13106  0gc0g 13284  Grpcgrp 13528  invgcminusg 13529  Rngcrng 13890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-abl 13819  df-mgp 13879  df-rng 13891
This theorem is referenced by:  rngm2neg  13907  rngsubdi  13909
  Copyright terms: Public domain W3C validator