![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rngmneg2 | GIF version |
Description: Negation of a product in a non-unital ring (mulneg2 8415 analog). In contrast to ringmneg2 13550, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
Ref | Expression |
---|---|
rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
rngneglmul.t | ⊢ · = (.r‘𝑅) |
rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
rngmneg2 | ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2193 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2193 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | rngneglmul.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
5 | rngneglmul.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
6 | rnggrp 13434 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
8 | rngneglmul.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 1, 2, 3, 4, 7, 8 | grplinvd 13127 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑌)(+g‘𝑅)𝑌) = (0g‘𝑅)) |
10 | 9 | oveq2d 5934 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (𝑋 · (0g‘𝑅))) |
11 | rngneglmul.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | rngneglmul.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
13 | 1, 12, 3 | rngrz 13442 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
14 | 5, 11, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
15 | 10, 14 | eqtrd 2226 | . . 3 ⊢ (𝜑 → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅)) |
16 | 1, 12 | rngcl 13440 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
17 | 5, 11, 8, 16 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
18 | 1, 4, 7, 8 | grpinvcld 13121 | . . . . . 6 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
19 | 1, 12 | rngcl 13440 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) |
20 | 5, 11, 18, 19 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) |
21 | 1, 2, 3, 4 | grpinvid2 13125 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅))) |
22 | 7, 17, 20, 21 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅))) |
23 | 1, 2, 12 | rngdi 13436 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌))) |
24 | 23 | eqcomd 2199 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌))) |
25 | 5, 11, 18, 8, 24 | syl13anc 1251 | . . . . 5 ⊢ (𝜑 → ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌))) |
26 | 25 | eqeq1d 2202 | . . . 4 ⊢ (𝜑 → (((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅) ↔ (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅))) |
27 | 22, 26 | bitrd 188 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅))) |
28 | 15, 27 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌))) |
29 | 28 | eqcomd 2199 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 0gc0g 12867 Grpcgrp 13072 invgcminusg 13073 Rngcrng 13428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-abl 13357 df-mgp 13417 df-rng 13429 |
This theorem is referenced by: rngm2neg 13445 rngsubdi 13447 |
Copyright terms: Public domain | W3C validator |