| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngmneg2 | GIF version | ||
| Description: Negation of a product in a non-unital ring (mulneg2 8467 analog). In contrast to ringmneg2 13787, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngneglmul.t | ⊢ · = (.r‘𝑅) |
| rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngmneg2 | ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2204 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | eqid 2204 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | rngneglmul.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
| 5 | rngneglmul.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 6 | rnggrp 13671 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngneglmul.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 7, 8 | grplinvd 13358 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑌)(+g‘𝑅)𝑌) = (0g‘𝑅)) |
| 10 | 9 | oveq2d 5959 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (𝑋 · (0g‘𝑅))) |
| 11 | rngneglmul.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | rngneglmul.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 13 | 1, 12, 3 | rngrz 13679 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
| 14 | 5, 11, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
| 15 | 10, 14 | eqtrd 2237 | . . 3 ⊢ (𝜑 → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅)) |
| 16 | 1, 12 | rngcl 13677 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 17 | 5, 11, 8, 16 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 18 | 1, 4, 7, 8 | grpinvcld 13352 | . . . . . 6 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 19 | 1, 12 | rngcl 13677 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) |
| 20 | 5, 11, 18, 19 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) |
| 21 | 1, 2, 3, 4 | grpinvid2 13356 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅))) |
| 22 | 7, 17, 20, 21 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅))) |
| 23 | 1, 2, 12 | rngdi 13673 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌))) |
| 24 | 23 | eqcomd 2210 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌))) |
| 25 | 5, 11, 18, 8, 24 | syl13anc 1251 | . . . . 5 ⊢ (𝜑 → ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌))) |
| 26 | 25 | eqeq1d 2213 | . . . 4 ⊢ (𝜑 → (((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅) ↔ (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅))) |
| 27 | 22, 26 | bitrd 188 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅))) |
| 28 | 15, 27 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌))) |
| 29 | 28 | eqcomd 2210 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 Basecbs 12803 +gcplusg 12880 .rcmulr 12881 0gc0g 13059 Grpcgrp 13303 invgcminusg 13304 Rngcrng 13665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12806 df-slot 12807 df-base 12809 df-sets 12810 df-plusg 12893 df-mulr 12894 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-minusg 13307 df-abl 13594 df-mgp 13654 df-rng 13666 |
| This theorem is referenced by: rngm2neg 13682 rngsubdi 13684 |
| Copyright terms: Public domain | W3C validator |