ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsinvlem GIF version

Theorem prdsinvlem 13607
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y 𝑌 = (𝑆Xs𝑅)
prdsinvlem.b 𝐵 = (Base‘𝑌)
prdsinvlem.p + = (+g𝑌)
prdsinvlem.s (𝜑𝑆𝑉)
prdsinvlem.i (𝜑𝐼𝑊)
prdsinvlem.r (𝜑𝑅:𝐼⟶Grp)
prdsinvlem.f (𝜑𝐹𝐵)
prdsinvlem.z 0 = (0g𝑅)
prdsinvlem.n 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
Assertion
Ref Expression
prdsinvlem (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐼   𝜑,𝑦   𝑦,𝑅   𝑦,𝑆   𝑦,𝑉   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem prdsinvlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
2 eqid 2209 . . . . . 6 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
3 eqid 2209 . . . . . 6 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
4 prdsinvlem.r . . . . . . 7 (𝜑𝑅:𝐼⟶Grp)
54ffvelcdmda 5743 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Grp)
6 prdsinvlem.y . . . . . . 7 𝑌 = (𝑆Xs𝑅)
7 prdsinvlem.b . . . . . . 7 𝐵 = (Base‘𝑌)
8 prdsinvlem.s . . . . . . . 8 (𝜑𝑆𝑉)
98adantr 276 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑆𝑉)
10 prdsinvlem.i . . . . . . . 8 (𝜑𝐼𝑊)
1110adantr 276 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐼𝑊)
124ffnd 5450 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
1312adantr 276 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑅 Fn 𝐼)
14 prdsinvlem.f . . . . . . . 8 (𝜑𝐹𝐵)
1514adantr 276 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐹𝐵)
16 simpr 110 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑦𝐼)
176, 7, 9, 11, 13, 15, 16prdsbasprj 13281 . . . . . 6 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (Base‘(𝑅𝑦)))
182, 3, 5, 17grpinvcld 13548 . . . . 5 ((𝜑𝑦𝐼) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
1918ralrimiva 2583 . . . 4 (𝜑 → ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
206, 7, 8, 10, 12prdsbasmpt 13279 . . . 4 (𝜑 → ((𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦))))
2119, 20mpbird 167 . . 3 (𝜑 → (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵)
221, 21eqeltrid 2296 . 2 (𝜑𝑁𝐵)
23 eqid 2209 . . . . . 6 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
24 eqid 2209 . . . . . 6 (+g‘(𝑅𝑥)) = (+g‘(𝑅𝑥))
25 eqid 2209 . . . . . 6 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
26 eqid 2209 . . . . . 6 (invg‘(𝑅𝑥)) = (invg‘(𝑅𝑥))
274ffvelcdmda 5743 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ Grp)
288adantr 276 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑉)
2910adantr 276 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑊)
3012adantr 276 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 Fn 𝐼)
3114adantr 276 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐹𝐵)
32 simpr 110 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
336, 7, 28, 29, 30, 31, 32prdsbasprj 13281 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘(𝑅𝑥)))
3423, 24, 25, 26, 27, 33grplinvd 13554 . . . . 5 ((𝜑𝑥𝐼) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
35 2fveq3 5608 . . . . . . . 8 (𝑦 = 𝑥 → (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑥)))
36 fveq2 5603 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3735, 36fveq12d 5610 . . . . . . 7 (𝑦 = 𝑥 → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
3823, 26, 27, 33grpinvcld 13548 . . . . . . 7 ((𝜑𝑥𝐼) → ((invg‘(𝑅𝑥))‘(𝐹𝑥)) ∈ (Base‘(𝑅𝑥)))
391, 37, 32, 38fvmptd3 5701 . . . . . 6 ((𝜑𝑥𝐼) → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4039oveq1d 5989 . . . . 5 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)))
41 prdsinvlem.z . . . . . . 7 0 = (0g𝑅)
4241fveq1i 5604 . . . . . 6 ( 0𝑥) = ((0g𝑅)‘𝑥)
43 fvco2 5676 . . . . . . 7 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4412, 43sylan 283 . . . . . 6 ((𝜑𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4542, 44eqtrid 2254 . . . . 5 ((𝜑𝑥𝐼) → ( 0𝑥) = (0g‘(𝑅𝑥)))
4634, 40, 453eqtr4d 2252 . . . 4 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = ( 0𝑥))
4746mpteq2dva 4153 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))) = (𝑥𝐼 ↦ ( 0𝑥)))
48 prdsinvlem.p . . . 4 + = (+g𝑌)
496, 7, 8, 10, 12, 22, 14, 48prdsplusgval 13282 . . 3 (𝜑 → (𝑁 + 𝐹) = (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))))
50 fn0g 13374 . . . . . 6 0g Fn V
51 ssv 3226 . . . . . . 7 ran 𝑅 ⊆ V
5251a1i 9 . . . . . 6 (𝜑 → ran 𝑅 ⊆ V)
53 fnco 5407 . . . . . 6 ((0g Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (0g𝑅) Fn 𝐼)
5450, 12, 52, 53mp3an2i 1357 . . . . 5 (𝜑 → (0g𝑅) Fn 𝐼)
5541fneq1i 5391 . . . . 5 ( 0 Fn 𝐼 ↔ (0g𝑅) Fn 𝐼)
5654, 55sylibr 134 . . . 4 (𝜑0 Fn 𝐼)
57 dffn5im 5652 . . . 4 ( 0 Fn 𝐼0 = (𝑥𝐼 ↦ ( 0𝑥)))
5856, 57syl 14 . . 3 (𝜑0 = (𝑥𝐼 ↦ ( 0𝑥)))
5947, 49, 583eqtr4d 2252 . 2 (𝜑 → (𝑁 + 𝐹) = 0 )
6022, 59jca 306 1 (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  Vcvv 2779  wss 3177  cmpt 4124  ran crn 4697  ccom 4700   Fn wfn 5289  wf 5290  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  Xscprds 13264  Grpcgrp 13499  invgcminusg 13500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-ixp 6816  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-fz 10173  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-tset 13095  df-ple 13096  df-ds 13098  df-hom 13100  df-cco 13101  df-rest 13240  df-topn 13241  df-0g 13257  df-topgen 13259  df-pt 13260  df-prds 13266  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503
This theorem is referenced by:  prdsgrpd  13608  prdsinvgd  13609
  Copyright terms: Public domain W3C validator