ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsinvlem GIF version

Theorem prdsinvlem 13310
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y 𝑌 = (𝑆Xs𝑅)
prdsinvlem.b 𝐵 = (Base‘𝑌)
prdsinvlem.p + = (+g𝑌)
prdsinvlem.s (𝜑𝑆𝑉)
prdsinvlem.i (𝜑𝐼𝑊)
prdsinvlem.r (𝜑𝑅:𝐼⟶Grp)
prdsinvlem.f (𝜑𝐹𝐵)
prdsinvlem.z 0 = (0g𝑅)
prdsinvlem.n 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
Assertion
Ref Expression
prdsinvlem (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐼   𝜑,𝑦   𝑦,𝑅   𝑦,𝑆   𝑦,𝑉   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem prdsinvlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
2 eqid 2196 . . . . . 6 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
3 eqid 2196 . . . . . 6 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
4 prdsinvlem.r . . . . . . 7 (𝜑𝑅:𝐼⟶Grp)
54ffvelcdmda 5700 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Grp)
6 prdsinvlem.y . . . . . . 7 𝑌 = (𝑆Xs𝑅)
7 prdsinvlem.b . . . . . . 7 𝐵 = (Base‘𝑌)
8 prdsinvlem.s . . . . . . . 8 (𝜑𝑆𝑉)
98adantr 276 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑆𝑉)
10 prdsinvlem.i . . . . . . . 8 (𝜑𝐼𝑊)
1110adantr 276 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐼𝑊)
124ffnd 5411 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
1312adantr 276 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑅 Fn 𝐼)
14 prdsinvlem.f . . . . . . . 8 (𝜑𝐹𝐵)
1514adantr 276 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐹𝐵)
16 simpr 110 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑦𝐼)
176, 7, 9, 11, 13, 15, 16prdsbasprj 12984 . . . . . 6 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (Base‘(𝑅𝑦)))
182, 3, 5, 17grpinvcld 13251 . . . . 5 ((𝜑𝑦𝐼) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
1918ralrimiva 2570 . . . 4 (𝜑 → ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
206, 7, 8, 10, 12prdsbasmpt 12982 . . . 4 (𝜑 → ((𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦))))
2119, 20mpbird 167 . . 3 (𝜑 → (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵)
221, 21eqeltrid 2283 . 2 (𝜑𝑁𝐵)
23 eqid 2196 . . . . . 6 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
24 eqid 2196 . . . . . 6 (+g‘(𝑅𝑥)) = (+g‘(𝑅𝑥))
25 eqid 2196 . . . . . 6 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
26 eqid 2196 . . . . . 6 (invg‘(𝑅𝑥)) = (invg‘(𝑅𝑥))
274ffvelcdmda 5700 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ Grp)
288adantr 276 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑉)
2910adantr 276 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑊)
3012adantr 276 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 Fn 𝐼)
3114adantr 276 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐹𝐵)
32 simpr 110 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
336, 7, 28, 29, 30, 31, 32prdsbasprj 12984 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘(𝑅𝑥)))
3423, 24, 25, 26, 27, 33grplinvd 13257 . . . . 5 ((𝜑𝑥𝐼) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
35 2fveq3 5566 . . . . . . . 8 (𝑦 = 𝑥 → (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑥)))
36 fveq2 5561 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3735, 36fveq12d 5568 . . . . . . 7 (𝑦 = 𝑥 → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
3823, 26, 27, 33grpinvcld 13251 . . . . . . 7 ((𝜑𝑥𝐼) → ((invg‘(𝑅𝑥))‘(𝐹𝑥)) ∈ (Base‘(𝑅𝑥)))
391, 37, 32, 38fvmptd3 5658 . . . . . 6 ((𝜑𝑥𝐼) → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4039oveq1d 5940 . . . . 5 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)))
41 prdsinvlem.z . . . . . . 7 0 = (0g𝑅)
4241fveq1i 5562 . . . . . 6 ( 0𝑥) = ((0g𝑅)‘𝑥)
43 fvco2 5633 . . . . . . 7 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4412, 43sylan 283 . . . . . 6 ((𝜑𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4542, 44eqtrid 2241 . . . . 5 ((𝜑𝑥𝐼) → ( 0𝑥) = (0g‘(𝑅𝑥)))
4634, 40, 453eqtr4d 2239 . . . 4 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = ( 0𝑥))
4746mpteq2dva 4124 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))) = (𝑥𝐼 ↦ ( 0𝑥)))
48 prdsinvlem.p . . . 4 + = (+g𝑌)
496, 7, 8, 10, 12, 22, 14, 48prdsplusgval 12985 . . 3 (𝜑 → (𝑁 + 𝐹) = (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))))
50 fn0g 13077 . . . . . 6 0g Fn V
51 ssv 3206 . . . . . . 7 ran 𝑅 ⊆ V
5251a1i 9 . . . . . 6 (𝜑 → ran 𝑅 ⊆ V)
53 fnco 5369 . . . . . 6 ((0g Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (0g𝑅) Fn 𝐼)
5450, 12, 52, 53mp3an2i 1353 . . . . 5 (𝜑 → (0g𝑅) Fn 𝐼)
5541fneq1i 5353 . . . . 5 ( 0 Fn 𝐼 ↔ (0g𝑅) Fn 𝐼)
5654, 55sylibr 134 . . . 4 (𝜑0 Fn 𝐼)
57 dffn5im 5609 . . . 4 ( 0 Fn 𝐼0 = (𝑥𝐼 ↦ ( 0𝑥)))
5856, 57syl 14 . . 3 (𝜑0 = (𝑥𝐼 ↦ ( 0𝑥)))
5947, 49, 583eqtr4d 2239 . 2 (𝜑 → (𝑁 + 𝐹) = 0 )
6022, 59jca 306 1 (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  wss 3157  cmpt 4095  ran crn 4665  ccom 4668   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  0gc0g 12958  Xscprds 12967  Grpcgrp 13202  invgcminusg 13203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-fz 10101  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799  df-ple 12800  df-ds 12802  df-hom 12804  df-cco 12805  df-rest 12943  df-topn 12944  df-0g 12960  df-topgen 12962  df-pt 12963  df-prds 12969  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206
This theorem is referenced by:  prdsgrpd  13311  prdsinvgd  13312
  Copyright terms: Public domain W3C validator