| Step | Hyp | Ref
| Expression |
| 1 | | prdsinvlem.n |
. . 3
⊢ 𝑁 = (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦))) |
| 2 | | eqid 2196 |
. . . . . 6
⊢
(Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑦)) |
| 3 | | eqid 2196 |
. . . . . 6
⊢
(invg‘(𝑅‘𝑦)) = (invg‘(𝑅‘𝑦)) |
| 4 | | prdsinvlem.r |
. . . . . . 7
⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
| 5 | 4 | ffvelcdmda 5700 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ Grp) |
| 6 | | prdsinvlem.y |
. . . . . . 7
⊢ 𝑌 = (𝑆Xs𝑅) |
| 7 | | prdsinvlem.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑌) |
| 8 | | prdsinvlem.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 9 | 8 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
| 10 | | prdsinvlem.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 11 | 10 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 12 | 4 | ffnd 5411 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 13 | 12 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑅 Fn 𝐼) |
| 14 | | prdsinvlem.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 15 | 14 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝐹 ∈ 𝐵) |
| 16 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
| 17 | 6, 7, 9, 11, 13, 15, 16 | prdsbasprj 12984 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
| 18 | 2, 3, 5, 17 | grpinvcld 13251 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
| 19 | 18 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐼 ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
| 20 | 6, 7, 8, 10, 12 | prdsbasmpt 12982 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦))) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐼 ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦)) ∈ (Base‘(𝑅‘𝑦)))) |
| 21 | 19, 20 | mpbird 167 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦))) ∈ 𝐵) |
| 22 | 1, 21 | eqeltrid 2283 |
. 2
⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| 23 | | eqid 2196 |
. . . . . 6
⊢
(Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) |
| 24 | | eqid 2196 |
. . . . . 6
⊢
(+g‘(𝑅‘𝑥)) = (+g‘(𝑅‘𝑥)) |
| 25 | | eqid 2196 |
. . . . . 6
⊢
(0g‘(𝑅‘𝑥)) = (0g‘(𝑅‘𝑥)) |
| 26 | | eqid 2196 |
. . . . . 6
⊢
(invg‘(𝑅‘𝑥)) = (invg‘(𝑅‘𝑥)) |
| 27 | 4 | ffvelcdmda 5700 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ Grp) |
| 28 | 8 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
| 29 | 10 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 30 | 12 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 Fn 𝐼) |
| 31 | 14 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝐵) |
| 32 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
| 33 | 6, 7, 28, 29, 30, 31, 32 | prdsbasprj 12984 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
| 34 | 23, 24, 25, 26, 27, 33 | grplinvd 13257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥))(+g‘(𝑅‘𝑥))(𝐹‘𝑥)) = (0g‘(𝑅‘𝑥))) |
| 35 | | 2fveq3 5566 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (invg‘(𝑅‘𝑦)) = (invg‘(𝑅‘𝑥))) |
| 36 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 37 | 35, 36 | fveq12d 5568 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦)) = ((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥))) |
| 38 | 23, 26, 27, 33 | grpinvcld 13251 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥)) ∈ (Base‘(𝑅‘𝑥))) |
| 39 | 1, 37, 32, 38 | fvmptd3 5658 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑁‘𝑥) = ((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥))) |
| 40 | 39 | oveq1d 5940 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑁‘𝑥)(+g‘(𝑅‘𝑥))(𝐹‘𝑥)) = (((invg‘(𝑅‘𝑥))‘(𝐹‘𝑥))(+g‘(𝑅‘𝑥))(𝐹‘𝑥))) |
| 41 | | prdsinvlem.z |
. . . . . . 7
⊢ 0 =
(0g ∘ 𝑅) |
| 42 | 41 | fveq1i 5562 |
. . . . . 6
⊢ ( 0 ‘𝑥) = ((0g ∘
𝑅)‘𝑥) |
| 43 | | fvco2 5633 |
. . . . . . 7
⊢ ((𝑅 Fn 𝐼 ∧ 𝑥 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑥) = (0g‘(𝑅‘𝑥))) |
| 44 | 12, 43 | sylan 283 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑥) = (0g‘(𝑅‘𝑥))) |
| 45 | 42, 44 | eqtrid 2241 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( 0 ‘𝑥) = (0g‘(𝑅‘𝑥))) |
| 46 | 34, 40, 45 | 3eqtr4d 2239 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑁‘𝑥)(+g‘(𝑅‘𝑥))(𝐹‘𝑥)) = ( 0 ‘𝑥)) |
| 47 | 46 | mpteq2dva 4124 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝑁‘𝑥)(+g‘(𝑅‘𝑥))(𝐹‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ( 0 ‘𝑥))) |
| 48 | | prdsinvlem.p |
. . . 4
⊢ + =
(+g‘𝑌) |
| 49 | 6, 7, 8, 10, 12, 22, 14, 48 | prdsplusgval 12985 |
. . 3
⊢ (𝜑 → (𝑁 + 𝐹) = (𝑥 ∈ 𝐼 ↦ ((𝑁‘𝑥)(+g‘(𝑅‘𝑥))(𝐹‘𝑥)))) |
| 50 | | fn0g 13077 |
. . . . . 6
⊢
0g Fn V |
| 51 | | ssv 3206 |
. . . . . . 7
⊢ ran 𝑅 ⊆ V |
| 52 | 51 | a1i 9 |
. . . . . 6
⊢ (𝜑 → ran 𝑅 ⊆ V) |
| 53 | | fnco 5369 |
. . . . . 6
⊢
((0g Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (0g ∘
𝑅) Fn 𝐼) |
| 54 | 50, 12, 52, 53 | mp3an2i 1353 |
. . . . 5
⊢ (𝜑 → (0g ∘
𝑅) Fn 𝐼) |
| 55 | 41 | fneq1i 5353 |
. . . . 5
⊢ ( 0 Fn 𝐼 ↔ (0g ∘
𝑅) Fn 𝐼) |
| 56 | 54, 55 | sylibr 134 |
. . . 4
⊢ (𝜑 → 0 Fn 𝐼) |
| 57 | | dffn5im 5609 |
. . . 4
⊢ ( 0 Fn 𝐼 → 0 = (𝑥 ∈ 𝐼 ↦ ( 0 ‘𝑥))) |
| 58 | 56, 57 | syl 14 |
. . 3
⊢ (𝜑 → 0 = (𝑥 ∈ 𝐼 ↦ ( 0 ‘𝑥))) |
| 59 | 47, 49, 58 | 3eqtr4d 2239 |
. 2
⊢ (𝜑 → (𝑁 + 𝐹) = 0 ) |
| 60 | 22, 59 | jca 306 |
1
⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ (𝑁 + 𝐹) = 0 )) |