ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeocnvb GIF version

Theorem hmeocnvb 13389
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeocnvb (Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))

Proof of Theorem hmeocnvb
StepHypRef Expression
1 hmeocnv 13378 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))
2 dfrel2 5071 . . . 4 (Rel 𝐹𝐹 = 𝐹)
3 eleq1 2238 . . . 4 (𝐹 = 𝐹 → (𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
42, 3sylbi 121 . . 3 (Rel 𝐹 → (𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
51, 4syl5ib 154 . 2 (Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽)))
6 hmeocnv 13378 . 2 (𝐹 ∈ (𝐾Homeo𝐽) → 𝐹 ∈ (𝐽Homeo𝐾))
75, 6impbid1 142 1 (Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wcel 2146  ccnv 4619  Rel wrel 4625  (class class class)co 5865  Homeochmeo 13371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-top 13067  df-topon 13080  df-cn 13259  df-hmeo 13372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator