Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hmeocnvb | GIF version |
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmeocnvb | ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnv 13378 | . . 3 ⊢ (◡𝐹 ∈ (𝐽Homeo𝐾) → ◡◡𝐹 ∈ (𝐾Homeo𝐽)) | |
2 | dfrel2 5071 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
3 | eleq1 2238 | . . . 4 ⊢ (◡◡𝐹 = 𝐹 → (◡◡𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) | |
4 | 2, 3 | sylbi 121 | . . 3 ⊢ (Rel 𝐹 → (◡◡𝐹 ∈ (𝐾Homeo𝐽) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
5 | 1, 4 | syl5ib 154 | . 2 ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))) |
6 | hmeocnv 13378 | . 2 ⊢ (𝐹 ∈ (𝐾Homeo𝐽) → ◡𝐹 ∈ (𝐽Homeo𝐾)) | |
7 | 5, 6 | impbid1 142 | 1 ⊢ (Rel 𝐹 → (◡𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ◡ccnv 4619 Rel wrel 4625 (class class class)co 5865 Homeochmeo 13371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-top 13067 df-topon 13080 df-cn 13259 df-hmeo 13372 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |