| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfle | GIF version | ||
| Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| mnfle | ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltmnf 9917 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | |
| 2 | mnfxr 8136 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | xrlenlt 8144 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) | |
| 4 | 2, 3 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2177 class class class wbr 4047 -∞cmnf 8112 ℝ*cxr 8113 < clt 8114 ≤ cle 8115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-xp 4685 df-cnv 4687 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 |
| This theorem is referenced by: xrre2 9950 xleadd1a 10002 xltadd1 10005 xlt2add 10009 xsubge0 10010 xlesubadd 10012 xleaddadd 10016 elioc2 10065 iccmax 10078 xrmaxifle 11601 xrmaxltsup 11613 xrmaxadd 11616 tgioo 15070 |
| Copyright terms: Public domain | W3C validator |