| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfle | GIF version | ||
| Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| mnfle | ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltmnf 9952 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | |
| 2 | mnfxr 8171 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | xrlenlt 8179 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) | |
| 4 | 2, 3 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2180 class class class wbr 4062 -∞cmnf 8147 ℝ*cxr 8148 < clt 8149 ≤ cle 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-cnv 4704 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 |
| This theorem is referenced by: xrre2 9985 xleadd1a 10037 xltadd1 10040 xlt2add 10044 xsubge0 10045 xlesubadd 10047 xleaddadd 10051 elioc2 10100 iccmax 10113 xrmaxifle 11723 xrmaxltsup 11735 xrmaxadd 11738 tgioo 15193 |
| Copyright terms: Public domain | W3C validator |