Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mnfle | GIF version |
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
Ref | Expression |
---|---|
mnfle | ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltmnf 9724 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | |
2 | mnfxr 7955 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | xrlenlt 7963 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) | |
4 | 2, 3 | mpan 421 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) |
5 | 1, 4 | mpbird 166 | 1 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∈ wcel 2136 class class class wbr 3982 -∞cmnf 7931 ℝ*cxr 7932 < clt 7933 ≤ cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: xrre2 9757 xleadd1a 9809 xltadd1 9812 xlt2add 9816 xsubge0 9817 xlesubadd 9819 xleaddadd 9823 elioc2 9872 iccmax 9885 xrmaxifle 11187 xrmaxltsup 11199 xrmaxadd 11202 tgioo 13186 |
Copyright terms: Public domain | W3C validator |