ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfle GIF version

Theorem mnfle 9728
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
mnfle (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)

Proof of Theorem mnfle
StepHypRef Expression
1 nltmnf 9724 . 2 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2 mnfxr 7955 . . 3 -∞ ∈ ℝ*
3 xrlenlt 7963 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
42, 3mpan 421 . 2 (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
51, 4mpbird 166 1 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wcel 2136   class class class wbr 3982  -∞cmnf 7931  *cxr 7932   < clt 7933  cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939
This theorem is referenced by:  xrre2  9757  xleadd1a  9809  xltadd1  9812  xlt2add  9816  xsubge0  9817  xlesubadd  9819  xleaddadd  9823  elioc2  9872  iccmax  9885  xrmaxifle  11187  xrmaxltsup  11199  xrmaxadd  11202  tgioo  13186
  Copyright terms: Public domain W3C validator