Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mnfle | GIF version |
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
Ref | Expression |
---|---|
mnfle | ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltmnf 9745 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | |
2 | mnfxr 7976 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | xrlenlt 7984 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) | |
4 | 2, 3 | mpan 422 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) |
5 | 1, 4 | mpbird 166 | 1 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∈ wcel 2141 class class class wbr 3989 -∞cmnf 7952 ℝ*cxr 7953 < clt 7954 ≤ cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: xrre2 9778 xleadd1a 9830 xltadd1 9833 xlt2add 9837 xsubge0 9838 xlesubadd 9840 xleaddadd 9844 elioc2 9893 iccmax 9906 xrmaxifle 11209 xrmaxltsup 11221 xrmaxadd 11224 tgioo 13340 |
Copyright terms: Public domain | W3C validator |