Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ioorp | GIF version |
Description: The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
Ref | Expression |
---|---|
ioorp | ⊢ (0(,)+∞) = ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioopos 9832 | . 2 ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
2 | df-rp 9539 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
3 | 1, 2 | eqtr4i 2178 | 1 ⊢ (0(,)+∞) = ℝ+ |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 {crab 2436 class class class wbr 3961 (class class class)co 5814 ℝcr 7710 0cc0 7711 +∞cpnf 7888 < clt 7891 ℝ+crp 9538 (,)cioo 9770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1re 7805 ax-addrcl 7808 ax-rnegex 7820 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-id 4248 df-po 4251 df-iso 4252 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-rp 9539 df-ioo 9774 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |