ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsubdir GIF version

Theorem lmodsubdir 14317
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdir.v 𝑉 = (Base‘𝑊)
lmodsubdir.t · = ( ·𝑠𝑊)
lmodsubdir.f 𝐹 = (Scalar‘𝑊)
lmodsubdir.k 𝐾 = (Base‘𝐹)
lmodsubdir.m = (-g𝑊)
lmodsubdir.s 𝑆 = (-g𝐹)
lmodsubdir.w (𝜑𝑊 ∈ LMod)
lmodsubdir.a (𝜑𝐴𝐾)
lmodsubdir.b (𝜑𝐵𝐾)
lmodsubdir.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lmodsubdir (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))

Proof of Theorem lmodsubdir
StepHypRef Expression
1 lmodsubdir.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodsubdir.a . . . 4 (𝜑𝐴𝐾)
3 lmodsubdir.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
43lmodring 14267 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
51, 4syl 14 . . . . . 6 (𝜑𝐹 ∈ Ring)
6 ringgrp 13972 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
75, 6syl 14 . . . . 5 (𝜑𝐹 ∈ Grp)
8 lmodsubdir.b . . . . 5 (𝜑𝐵𝐾)
9 lmodsubdir.k . . . . . 6 𝐾 = (Base‘𝐹)
10 eqid 2229 . . . . . 6 (invg𝐹) = (invg𝐹)
119, 10grpinvcl 13589 . . . . 5 ((𝐹 ∈ Grp ∧ 𝐵𝐾) → ((invg𝐹)‘𝐵) ∈ 𝐾)
127, 8, 11syl2anc 411 . . . 4 (𝜑 → ((invg𝐹)‘𝐵) ∈ 𝐾)
13 lmodsubdir.x . . . 4 (𝜑𝑋𝑉)
14 lmodsubdir.v . . . . 5 𝑉 = (Base‘𝑊)
15 eqid 2229 . . . . 5 (+g𝑊) = (+g𝑊)
16 lmodsubdir.t . . . . 5 · = ( ·𝑠𝑊)
17 eqid 2229 . . . . 5 (+g𝐹) = (+g𝐹)
1814, 15, 3, 16, 9, 17lmodvsdir 14284 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ ((invg𝐹)‘𝐵) ∈ 𝐾𝑋𝑉)) → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)))
191, 2, 12, 13, 18syl13anc 1273 . . 3 (𝜑 → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)))
20 eqid 2229 . . . . . . 7 (.r𝐹) = (.r𝐹)
21 eqid 2229 . . . . . . 7 (1r𝐹) = (1r𝐹)
229, 20, 21, 10, 5, 8ringnegl 14022 . . . . . 6 (𝜑 → (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) = ((invg𝐹)‘𝐵))
2322oveq1d 6022 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘𝐵) · 𝑋))
249, 21ringidcl 13991 . . . . . . . 8 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
255, 24syl 14 . . . . . . 7 (𝜑 → (1r𝐹) ∈ 𝐾)
269, 10grpinvcl 13589 . . . . . . 7 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
277, 25, 26syl2anc 411 . . . . . 6 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
2814, 3, 16, 9, 20lmodvsass 14285 . . . . . 6 ((𝑊 ∈ LMod ∧ (((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝐵𝐾𝑋𝑉)) → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
291, 27, 8, 13, 28syl13anc 1273 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
3023, 29eqtr3d 2264 . . . 4 (𝜑 → (((invg𝐹)‘𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
3130oveq2d 6023 . . 3 (𝜑 → ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
3219, 31eqtrd 2262 . 2 (𝜑 → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
33 lmodsubdir.s . . . . 5 𝑆 = (-g𝐹)
349, 17, 10, 33grpsubval 13587 . . . 4 ((𝐴𝐾𝐵𝐾) → (𝐴𝑆𝐵) = (𝐴(+g𝐹)((invg𝐹)‘𝐵)))
352, 8, 34syl2anc 411 . . 3 (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g𝐹)((invg𝐹)‘𝐵)))
3635oveq1d 6022 . 2 (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋))
3714, 3, 16, 9lmodvscl 14277 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
381, 2, 13, 37syl3anc 1271 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
3914, 3, 16, 9lmodvscl 14277 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
401, 8, 13, 39syl3anc 1271 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
41 lmodsubdir.m . . . 4 = (-g𝑊)
4214, 15, 41, 3, 16, 10, 21lmodvsubval2 14314 . . 3 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
431, 38, 40, 42syl3anc 1271 . 2 (𝜑 → ((𝐴 · 𝑋) (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
4432, 36, 433eqtr4d 2272 1 (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  Scalarcsca 13121   ·𝑠 cvsca 13122  Grpcgrp 13541  invgcminusg 13542  -gcsg 13543  1rcur 13930  Ringcrg 13967  LModclmod 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-sbg 13546  df-mgp 13892  df-ur 13931  df-ring 13969  df-lmod 14261
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator