ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsubdir GIF version

Theorem lmodsubdir 13977
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdir.v 𝑉 = (Base‘𝑊)
lmodsubdir.t · = ( ·𝑠𝑊)
lmodsubdir.f 𝐹 = (Scalar‘𝑊)
lmodsubdir.k 𝐾 = (Base‘𝐹)
lmodsubdir.m = (-g𝑊)
lmodsubdir.s 𝑆 = (-g𝐹)
lmodsubdir.w (𝜑𝑊 ∈ LMod)
lmodsubdir.a (𝜑𝐴𝐾)
lmodsubdir.b (𝜑𝐵𝐾)
lmodsubdir.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lmodsubdir (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))

Proof of Theorem lmodsubdir
StepHypRef Expression
1 lmodsubdir.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodsubdir.a . . . 4 (𝜑𝐴𝐾)
3 lmodsubdir.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
43lmodring 13927 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
51, 4syl 14 . . . . . 6 (𝜑𝐹 ∈ Ring)
6 ringgrp 13633 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
75, 6syl 14 . . . . 5 (𝜑𝐹 ∈ Grp)
8 lmodsubdir.b . . . . 5 (𝜑𝐵𝐾)
9 lmodsubdir.k . . . . . 6 𝐾 = (Base‘𝐹)
10 eqid 2196 . . . . . 6 (invg𝐹) = (invg𝐹)
119, 10grpinvcl 13250 . . . . 5 ((𝐹 ∈ Grp ∧ 𝐵𝐾) → ((invg𝐹)‘𝐵) ∈ 𝐾)
127, 8, 11syl2anc 411 . . . 4 (𝜑 → ((invg𝐹)‘𝐵) ∈ 𝐾)
13 lmodsubdir.x . . . 4 (𝜑𝑋𝑉)
14 lmodsubdir.v . . . . 5 𝑉 = (Base‘𝑊)
15 eqid 2196 . . . . 5 (+g𝑊) = (+g𝑊)
16 lmodsubdir.t . . . . 5 · = ( ·𝑠𝑊)
17 eqid 2196 . . . . 5 (+g𝐹) = (+g𝐹)
1814, 15, 3, 16, 9, 17lmodvsdir 13944 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ ((invg𝐹)‘𝐵) ∈ 𝐾𝑋𝑉)) → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)))
191, 2, 12, 13, 18syl13anc 1251 . . 3 (𝜑 → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)))
20 eqid 2196 . . . . . . 7 (.r𝐹) = (.r𝐹)
21 eqid 2196 . . . . . . 7 (1r𝐹) = (1r𝐹)
229, 20, 21, 10, 5, 8ringnegl 13683 . . . . . 6 (𝜑 → (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) = ((invg𝐹)‘𝐵))
2322oveq1d 5940 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘𝐵) · 𝑋))
249, 21ringidcl 13652 . . . . . . . 8 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
255, 24syl 14 . . . . . . 7 (𝜑 → (1r𝐹) ∈ 𝐾)
269, 10grpinvcl 13250 . . . . . . 7 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
277, 25, 26syl2anc 411 . . . . . 6 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
2814, 3, 16, 9, 20lmodvsass 13945 . . . . . 6 ((𝑊 ∈ LMod ∧ (((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝐵𝐾𝑋𝑉)) → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
291, 27, 8, 13, 28syl13anc 1251 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
3023, 29eqtr3d 2231 . . . 4 (𝜑 → (((invg𝐹)‘𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
3130oveq2d 5941 . . 3 (𝜑 → ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
3219, 31eqtrd 2229 . 2 (𝜑 → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
33 lmodsubdir.s . . . . 5 𝑆 = (-g𝐹)
349, 17, 10, 33grpsubval 13248 . . . 4 ((𝐴𝐾𝐵𝐾) → (𝐴𝑆𝐵) = (𝐴(+g𝐹)((invg𝐹)‘𝐵)))
352, 8, 34syl2anc 411 . . 3 (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g𝐹)((invg𝐹)‘𝐵)))
3635oveq1d 5940 . 2 (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋))
3714, 3, 16, 9lmodvscl 13937 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
381, 2, 13, 37syl3anc 1249 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
3914, 3, 16, 9lmodvscl 13937 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
401, 8, 13, 39syl3anc 1249 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
41 lmodsubdir.m . . . 4 = (-g𝑊)
4214, 15, 41, 3, 16, 10, 21lmodvsubval2 13974 . . 3 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
431, 38, 40, 42syl3anc 1249 . 2 (𝜑 → ((𝐴 · 𝑋) (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
4432, 36, 433eqtr4d 2239 1 (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  Scalarcsca 12783   ·𝑠 cvsca 12784  Grpcgrp 13202  invgcminusg 13203  -gcsg 13204  1rcur 13591  Ringcrg 13628  LModclmod 13919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-mgp 13553  df-ur 13592  df-ring 13630  df-lmod 13921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator