Proof of Theorem lmodsubdi
| Step | Hyp | Ref
 | Expression | 
| 1 |   | lmodsubdi.w | 
. . . 4
⊢ (𝜑 → 𝑊 ∈ LMod) | 
| 2 |   | lmodsubdi.x | 
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 3 |   | lmodsubdi.y | 
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑉) | 
| 4 |   | lmodsubdi.v | 
. . . . 5
⊢ 𝑉 = (Base‘𝑊) | 
| 5 |   | eqid 2196 | 
. . . . 5
⊢
(+g‘𝑊) = (+g‘𝑊) | 
| 6 |   | lmodsubdi.m | 
. . . . 5
⊢  − =
(-g‘𝑊) | 
| 7 |   | lmodsubdi.f | 
. . . . 5
⊢ 𝐹 = (Scalar‘𝑊) | 
| 8 |   | lmodsubdi.t | 
. . . . 5
⊢  · = (
·𝑠 ‘𝑊) | 
| 9 |   | eqid 2196 | 
. . . . 5
⊢
(invg‘𝐹) = (invg‘𝐹) | 
| 10 |   | eqid 2196 | 
. . . . 5
⊢
(1r‘𝐹) = (1r‘𝐹) | 
| 11 | 4, 5, 6, 7, 8, 9, 10 | lmodvsubval2 13898 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) | 
| 12 | 1, 2, 3, 11 | syl3anc 1249 | 
. . 3
⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) | 
| 13 | 12 | oveq2d 5938 | 
. 2
⊢ (𝜑 → (𝐴 · (𝑋 − 𝑌)) = (𝐴 · (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)))) | 
| 14 |   | lmodsubdi.k | 
. . . . . . . 8
⊢ 𝐾 = (Base‘𝐹) | 
| 15 |   | eqid 2196 | 
. . . . . . . 8
⊢
(.r‘𝐹) = (.r‘𝐹) | 
| 16 | 7 | lmodring 13851 | 
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) | 
| 17 | 1, 16 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ Ring) | 
| 18 |   | lmodsubdi.a | 
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝐾) | 
| 19 | 14, 15, 10, 9, 17, 18 | ringnegr 13608 | 
. . . . . . 7
⊢ (𝜑 → (𝐴(.r‘𝐹)((invg‘𝐹)‘(1r‘𝐹))) =
((invg‘𝐹)‘𝐴)) | 
| 20 | 14, 15, 10, 9, 17, 18 | ringnegl 13607 | 
. . . . . . 7
⊢ (𝜑 →
(((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐴) = ((invg‘𝐹)‘𝐴)) | 
| 21 | 19, 20 | eqtr4d 2232 | 
. . . . . 6
⊢ (𝜑 → (𝐴(.r‘𝐹)((invg‘𝐹)‘(1r‘𝐹))) =
(((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐴)) | 
| 22 | 21 | oveq1d 5937 | 
. . . . 5
⊢ (𝜑 → ((𝐴(.r‘𝐹)((invg‘𝐹)‘(1r‘𝐹))) · 𝑌) = ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌)) | 
| 23 |   | ringgrp 13557 | 
. . . . . . . 8
⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | 
| 24 | 17, 23 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ Grp) | 
| 25 | 14, 10 | ringidcl 13576 | 
. . . . . . . 8
⊢ (𝐹 ∈ Ring →
(1r‘𝐹)
∈ 𝐾) | 
| 26 | 17, 25 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) | 
| 27 | 14, 9 | grpinvcl 13180 | 
. . . . . . 7
⊢ ((𝐹 ∈ Grp ∧
(1r‘𝐹)
∈ 𝐾) →
((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) | 
| 28 | 24, 26, 27 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 →
((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) | 
| 29 | 4, 7, 8, 14, 15 | lmodvsass 13869 | 
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → ((𝐴(.r‘𝐹)((invg‘𝐹)‘(1r‘𝐹))) · 𝑌) = (𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) | 
| 30 | 1, 18, 28, 3, 29 | syl13anc 1251 | 
. . . . 5
⊢ (𝜑 → ((𝐴(.r‘𝐹)((invg‘𝐹)‘(1r‘𝐹))) · 𝑌) = (𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) | 
| 31 | 4, 7, 8, 14, 15 | lmodvsass 13869 | 
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧
(((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌))) | 
| 32 | 1, 28, 18, 3, 31 | syl13anc 1251 | 
. . . . 5
⊢ (𝜑 →
((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌))) | 
| 33 | 22, 30, 32 | 3eqtr3d 2237 | 
. . . 4
⊢ (𝜑 → (𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌))) | 
| 34 | 33 | oveq2d 5938 | 
. . 3
⊢ (𝜑 → ((𝐴 · 𝑋)(+g‘𝑊)(𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌)))) | 
| 35 | 4, 7, 8, 14 | lmodvscl 13861 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧
((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (((invg‘𝐹)‘(1r‘𝐹)) · 𝑌) ∈ 𝑉) | 
| 36 | 1, 28, 3, 35 | syl3anc 1249 | 
. . . 4
⊢ (𝜑 →
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌) ∈ 𝑉) | 
| 37 | 4, 5, 7, 8, 14 | lmodvsdi 13867 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ (((invg‘𝐹)‘(1r‘𝐹)) · 𝑌) ∈ 𝑉)) → (𝐴 · (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g‘𝑊)(𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)))) | 
| 38 | 1, 18, 2, 36, 37 | syl13anc 1251 | 
. . 3
⊢ (𝜑 → (𝐴 · (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g‘𝑊)(𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)))) | 
| 39 | 4, 7, 8, 14 | lmodvscl 13861 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) | 
| 40 | 1, 18, 2, 39 | syl3anc 1249 | 
. . . 4
⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) | 
| 41 | 4, 7, 8, 14 | lmodvscl 13861 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) | 
| 42 | 1, 18, 3, 41 | syl3anc 1249 | 
. . . 4
⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) | 
| 43 | 4, 5, 6, 7, 8, 9, 10 | lmodvsubval2 13898 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → ((𝐴 · 𝑋) − (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌)))) | 
| 44 | 1, 40, 42, 43 | syl3anc 1249 | 
. . 3
⊢ (𝜑 → ((𝐴 · 𝑋) − (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌)))) | 
| 45 | 34, 38, 44 | 3eqtr4rd 2240 | 
. 2
⊢ (𝜑 → ((𝐴 · 𝑋) − (𝐴 · 𝑌)) = (𝐴 · (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)))) | 
| 46 | 13, 45 | eqtr4d 2232 | 
1
⊢ (𝜑 → (𝐴 · (𝑋 − 𝑌)) = ((𝐴 · 𝑋) − (𝐴 · 𝑌))) |