ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsubdi GIF version

Theorem lmodsubdi 13840
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdi.v 𝑉 = (Base‘𝑊)
lmodsubdi.t · = ( ·𝑠𝑊)
lmodsubdi.f 𝐹 = (Scalar‘𝑊)
lmodsubdi.k 𝐾 = (Base‘𝐹)
lmodsubdi.m = (-g𝑊)
lmodsubdi.w (𝜑𝑊 ∈ LMod)
lmodsubdi.a (𝜑𝐴𝐾)
lmodsubdi.x (𝜑𝑋𝑉)
lmodsubdi.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodsubdi (𝜑 → (𝐴 · (𝑋 𝑌)) = ((𝐴 · 𝑋) (𝐴 · 𝑌)))

Proof of Theorem lmodsubdi
StepHypRef Expression
1 lmodsubdi.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodsubdi.x . . . 4 (𝜑𝑋𝑉)
3 lmodsubdi.y . . . 4 (𝜑𝑌𝑉)
4 lmodsubdi.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2193 . . . . 5 (+g𝑊) = (+g𝑊)
6 lmodsubdi.m . . . . 5 = (-g𝑊)
7 lmodsubdi.f . . . . 5 𝐹 = (Scalar‘𝑊)
8 lmodsubdi.t . . . . 5 · = ( ·𝑠𝑊)
9 eqid 2193 . . . . 5 (invg𝐹) = (invg𝐹)
10 eqid 2193 . . . . 5 (1r𝐹) = (1r𝐹)
114, 5, 6, 7, 8, 9, 10lmodvsubval2 13838 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌)))
121, 2, 3, 11syl3anc 1249 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌)))
1312oveq2d 5934 . 2 (𝜑 → (𝐴 · (𝑋 𝑌)) = (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))))
14 lmodsubdi.k . . . . . . . 8 𝐾 = (Base‘𝐹)
15 eqid 2193 . . . . . . . 8 (.r𝐹) = (.r𝐹)
167lmodring 13791 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
171, 16syl 14 . . . . . . . 8 (𝜑𝐹 ∈ Ring)
18 lmodsubdi.a . . . . . . . 8 (𝜑𝐴𝐾)
1914, 15, 10, 9, 17, 18ringnegr 13548 . . . . . . 7 (𝜑 → (𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) = ((invg𝐹)‘𝐴))
2014, 15, 10, 9, 17, 18ringnegl 13547 . . . . . . 7 (𝜑 → (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) = ((invg𝐹)‘𝐴))
2119, 20eqtr4d 2229 . . . . . 6 (𝜑 → (𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) = (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴))
2221oveq1d 5933 . . . . 5 (𝜑 → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌))
23 ringgrp 13497 . . . . . . . 8 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
2417, 23syl 14 . . . . . . 7 (𝜑𝐹 ∈ Grp)
2514, 10ringidcl 13516 . . . . . . . 8 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
2617, 25syl 14 . . . . . . 7 (𝜑 → (1r𝐹) ∈ 𝐾)
2714, 9grpinvcl 13120 . . . . . . 7 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
2824, 26, 27syl2anc 411 . . . . . 6 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
294, 7, 8, 14, 15lmodvsass 13809 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ ((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝑌𝑉)) → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)))
301, 18, 28, 3, 29syl13anc 1251 . . . . 5 (𝜑 → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)))
314, 7, 8, 14, 15lmodvsass 13809 . . . . . 6 ((𝑊 ∈ LMod ∧ (((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝐴𝐾𝑌𝑉)) → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
321, 28, 18, 3, 31syl13anc 1251 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
3322, 30, 323eqtr3d 2234 . . . 4 (𝜑 → (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
3433oveq2d 5934 . . 3 (𝜑 → ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
354, 7, 8, 14lmodvscl 13801 . . . . 5 ((𝑊 ∈ LMod ∧ ((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝑌𝑉) → (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)
361, 28, 3, 35syl3anc 1249 . . . 4 (𝜑 → (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)
374, 5, 7, 8, 14lmodvsdi 13807 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴𝐾𝑋𝑉 ∧ (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)) → (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))))
381, 18, 2, 36, 37syl13anc 1251 . . 3 (𝜑 → (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))))
394, 7, 8, 14lmodvscl 13801 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
401, 18, 2, 39syl3anc 1249 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
414, 7, 8, 14lmodvscl 13801 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
421, 18, 3, 41syl3anc 1249 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
434, 5, 6, 7, 8, 9, 10lmodvsubval2 13838 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
441, 40, 42, 43syl3anc 1249 . . 3 (𝜑 → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
4534, 38, 443eqtr4rd 2237 . 2 (𝜑 → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))))
4613, 45eqtr4d 2229 1 (𝜑 → (𝐴 · (𝑋 𝑌)) = ((𝐴 · 𝑋) (𝐴 · 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  Scalarcsca 12698   ·𝑠 cvsca 12699  Grpcgrp 13072  invgcminusg 13073  -gcsg 13074  1rcur 13455  Ringcrg 13492  LModclmod 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mgp 13417  df-ur 13456  df-ring 13494  df-lmod 13785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator